Skip to main content

Advertisement

Log in

Towards a Greener Pharmacy by More Eco Design

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This review proposes an overview of the main trends explored by the pharmaceutical industry in order to develop a greener and smarter pharmacy minimizing any negative impact to the environment, and using more sustainable processes and drugs. If many drugs have their origin in nature, many active ingredients are “toxic by design”. Some trials were carried out to design “green pills”, or greener active ingredients “benign by design”, avoiding the environmental pollution risk. More efforts were developed to reduce fine chemicals production footprints, and to decrease their E-factor. Biotechnology, and the use of enzymes for some transformation reactions is another good way of progress. Advanced galenics allows to reduce drug footprints on environment, since it can deliver the right dose of drug at the right time and at the right place, decrease the drug doses, and lower the wastes. Use of continuous processes is a strong trend in the area of primary and secondary pharmaceutical production. It is linked to the quality by design concept and to the in-process control by process analytical technology tools. Added to their diversification strategy, and despite their lower research productivity, and that more and more patented blockbusters become or will become generics soon, it will help the pharmaceutical companies to continue their development. At the same time, these efforts toward a greener pharmacy, and a social education of patients, will contribute to the health organization economies and to preserve the future of our planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gurib-Fakim, A.: Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 27, 1–93 (2006)

    Article  Google Scholar 

  2. Morphine: http://fr.wikipedia.org/wiki/Morphine. Accessed 13 Oct 2011

  3. Potier, P.: A la recherche et à la découverte de nouveaux médicaments. In: Baron M., Dodds J. (eds.) Albi Int. Rencontres in Pharm. Engin., pp. 13–24. ISBN 13 978-2-9511591-5-0, Ecole des Mines d’Albi-Carmaux, Albi (2004)

  4. Fleming, A.: On the antibacterial action of cultures of penicillium, with special reference to their use in the isolation of B. influenzae. Brit. J. Exp. Pathol. 10, 226–236 (1929)

    Google Scholar 

  5. Imhoff, J.F., Labes, A., Wiese, J.: Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol. Adv. 29, 468–482 (2011)

    Article  Google Scholar 

  6. Deichmann, W.B., Henschler, D., Holmstedt, B., Keil, G.: What is there that is not poison? A study of the third defense by paracelsus. Arch. Toxicol. 58, 207–2013 (1986)

    Article  Google Scholar 

  7. The University of Nottingham.: The liver and drug metabolism. http://www.nottingham.ac.uk/nmp/sonet/rlos/bioproc/liverdrug/2.html. Accessed 8 June 2012

  8. Vree, T.B., Van den Biggelaar-Martea, M., Verwey-Van Wissen, C.P.W.G.M., Vree, M.L., Guelen, P.J.M.: The pharmacokinetics of naproxen, its metabolite O-desmethylnaproxen, and their acylglucuronides in humanEffect of cimetidine. Br. J. Clin. Pharmacol. 35, 467–472 (1993)

    Article  Google Scholar 

  9. Apoteket AB.: Pharmaceuticals, environment and Health. http://www.janusinfo.se/Global/Miljo_och_lakemedel/lakemed_miljo_eng2007.pdf (2006). Accessed 13 Oct 2011

  10. Houeto, P., Carton, A., Guerbet, M., Mauclaire, A.-C., Gatignol, C., Lechat, P., Masset, D.: Assessment of the health risks related to the presence of drug residues in water for human consumption: application to carbamazepine. Regul Toxicol Pharmacol 62, 41–48 (2012)

    Article  Google Scholar 

  11. International ChemSec: NGOs express concern with European Commission’s position on chemical mixtures. http://Users/baron/Desktop/Review%20Waste%20Biomass%20Valor/phytosanitary,%20insecticides,%20herbicides/www.sinlist.org.webarchive. Accessed 6 June 2012

  12. Xu, Y., Luo, F., Pal, A., Gin, K.Y.-H., Reinhard, M.: Occurrence of emerging organic contaminants in a tropical urban catchment in Singapore. Chemosphere 83, 963–969 (2011)

    Article  Google Scholar 

  13. Dang, Z., Cheng, Y., Chen, H., Cui, Y., Yin, H., Trass, T., Montforts, M., Vermeire, T.: Evaluation of the Daphnia magna reproduction test for detecting endocrine disruptors. Chemosphere 88, 514–523 (2012)

    Article  Google Scholar 

  14. Brozinski, J.-M., Lahti, M., Oikari, A., Kronberg, L.: Detection of naproxen and its metabolites in fish bile following intraperitoneal and aqueous exposure. Environ. Sci. Pollut. Res. 18, 811–818 (2011)

    Article  Google Scholar 

  15. Zhang, Q.W., Matsumoto, H., Saito, F., Baron, M.: Debromination of hexabromobenzene by its co-grinding with CaO. Chemosphere 48(8), 787–793 (2002)

    Article  Google Scholar 

  16. Zhang, Q.W., Lu, J.F., Saito, F., Baron, M.: Mechanochemical solid-phase reaction between polyvinylidene fluoride and sodium hydroxyde. J. Appl. Polym. Sci. 81(9), 2249–2252 (2001)

    Article  Google Scholar 

  17. Ramaroson, J., Dirion, J.L., Nzihou, A., Sharrock, P., Depelsenaire, G.: Calcination of dredged sediments: investigation of the behaviour of heavy metals and the organic compounds. High Temp. Mat. Process. 27(5), 327–336 (2008)

    Google Scholar 

  18. Lafhaj, Z., Duan, Z., Bel Hadj Ali, I., Depelsenaire, G.: Valorization of treated river sediments in self compacting materials. Waste Biomass Valoris. 3(2), 239–247 (2012)

    Article  Google Scholar 

  19. Singh, J.S., Abhilash, P.C., Singh, H.B., Singh, R.P., Singh, D.P.: Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480(1–2), 1–9 (2011)

    Google Scholar 

  20. Massot, A., Estève, K., Noilet, P., Méoule, C., Poupot, C., Mietton-Peuchot, M.: Biodegradation of phytosanitary products in biological wastewater treatment. Water Res. 46, 1785–1792 (2012)

    Article  Google Scholar 

  21. Kümmerer, K.: Pharmaceuticals in the environment. Annu. Rev. Environ. Ressour. 35, 57–75 (2010)

    Article  Google Scholar 

  22. Trautweil, C., Kümmerer, K.: Degradation of the tricyclic antipsychotic drug chlorpromazine under environmental conditions, identification of its main aquatic biotic and abiotic transformation products by LS-MSn and their effects on environmental bacteria. J. Chromatogr. B 889–890, 24–38 (2012)

    Article  Google Scholar 

  23. McCormick, J.M., Van Es, T., Cooper, K.R., White, L.A., Häggblom, M.M.: Microbially mediated O-methylation of bisphenol a results in metabolites with increased toxicity to the developing zebrafish (Danio rerio) embryo. Environ. Sci. Technol. 45(15), 6567–6574 (2011)

    Article  Google Scholar 

  24. Kümmerer, K.: The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J. Environ. Manag. 90(8), 2354–2366 (2009)

    Article  Google Scholar 

  25. Pohl, J., Bertram, B., Nowrousian, M.R., Stüben, J., Wiessler, M.: D-19575 - a sugar-linked isophosphoramide mustard derivative exploiting transmembrane glucose transport. Cancer Chemother. Pharmacol. 35, 364–370 (1995)

    Article  Google Scholar 

  26. Mazur, L., Opido-Chanek, M., Stojak, M.: Isofosfamide as a new oxazaphosphorine anticancer agent. Anticancer Drugs 22(6), 488–493 (2011)

    Article  Google Scholar 

  27. Kümmerer, K., Al-Ahmad, A., Betram, B., Wiessler, M.: Biodegradability of antineoplastic compounds in screening tests: influence of glucosidation and stereochemistry. Chemosphere 40, 767–773 (2000)

    Article  Google Scholar 

  28. Zhang, S.: Computer-aided drug discovery and development. Methods Mol. Biol. 716, 23–38 (2011)

    Article  Google Scholar 

  29. Steger-Hartmann, T., Länge, R., Heuck, K.: Incorporation of in silico biodegradability screening in early drug development-a feasible approach? Environ. Sci. Pollut. Res. 18, 610–619 (2011)

    Article  Google Scholar 

  30. Daremberg C.: Œuvres anatomiques, physiologiques et médicales de Galien, T.1, J.B. Baillère Ed., Paris (1854)

  31. Sriamornsak, P.: Application of pectin in oral drug delivery. Expert Opin. Drug Deliv. 8(8), 1009–1023 (2011)

    Article  Google Scholar 

  32. Avachat, A.M., Dash, R.R., Shrotriya, S.N.: Recent investigations of plant based natural gums, mucilages and resins in novel drug delivery systems. Indian J. Pharm. Educ. Res. 45(1), 86–99 (2011)

    Google Scholar 

  33. Hamman, J.H.: Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs 8(4), 1305–1322 (2010)

    Article  Google Scholar 

  34. Faivre, V., Rosilio, V.: Interest of glycolipids in drug delivery: from physicochemical properties to drug targeting. Exp. Opin. Drug Deliv. 7(9), 1031–1048 (2010)

    Article  Google Scholar 

  35. Rasala, T.M., Kale, V.V., Lohiya, G.K., Moharir, K.S., Ittadwar, A.M., Awari, J.G.: Chemistry and pharmaceutical applications of excipients derived from tamarind. Asian J. Chem. 23(4), 1421–1423 (2011)

    Google Scholar 

  36. Chan, H.-K.: Nanodrug particles and nanoformulations for drug delivery. Adv. Drug Deliv. Rev. 63, 405 (2011)

    Article  Google Scholar 

  37. Amidon, G.L., Lennernas, H., Shah, V.P., Crison, J.R.: A theoretical basis for a biopharmaceutic drug classification—the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12(3), 413–420 (1995)

    Article  Google Scholar 

  38. Rogers, T.L., Johnston, K.P., Williams III, R.O.: Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. Drug Dev. Ind. Pharm. 27(10), 1003–1015 (2001)

    Article  Google Scholar 

  39. Ragab, D.M., Rohani, S.: Particle engineering strategies via crystallisation for pulmonary drug delivery. Org. Process Dev. 13, 1215–1223 (2009)

    Article  Google Scholar 

  40. Han, X., Ghoroi, C., To, D., Chen, Y., Davé, R.: Simultaneous micronization and surface modification for improvement of flow and dissolution of drug particles. Int. J. Pharm. 415(1–2), 185–195 (2011)

    Article  Google Scholar 

  41. Shermann B.C.: Pharmaceutical compositions comprising co-micronized fenofibrate. US Patent 6555135, (2000)

  42. Merisko-Liversidge, E., Liversidge, G.: Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev. 63(6), 427–440 (2011)

    Article  Google Scholar 

  43. Zhang, L.L., Chai, G.H., Zeng, X.P., He, H.B., Xu, H., Tang, X.: Preparation of fenofibrate immediate-release tablets involving wet grinding for improved bioavailability. Drug Dev. Ind. Pharm. 36(9), 1054–1063 (2010)

    Article  Google Scholar 

  44. Pasquali, I., Bettini, R., Giordano, F.: Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics. Eur. J. Pharm. Sci. 27, 299–310 (2006)

    Article  Google Scholar 

  45. Shapiro, H., Kagan, I., Shalita-Chesner, M., Singer, J., Singer, P.: Inhaled aerosolized insulin: a « Topical » anti-inflammatory treatment for acute lung injury and respiratory distress syndrome? Inflammation 33(5), 315–319 (2010)

    Article  Google Scholar 

  46. Kawashima, Y., Capes, C.E.: An experimental study of the kinetics of spherical agglomeration in a stirred vessel. Powder Technol. 10, 85–92 (1974)

    Article  Google Scholar 

  47. Nocent, M., Bertocchi, L., Espitalier, F., Baron, M., Couarraze, G.: Definition of a solvent system for spherical crystallization of salbutamol. J. Pharm. Sci. 13, 1215–1223 (2009)

    Google Scholar 

  48. Viçosa, A., Letourneau, J.J., Espitalier, F., Ré, M-I.: J. Cryst. Growth. doi:10.1016/j.jcrysgro.2011.09.012 (2011)

  49. Jojart-Laczkovich, O.J., Szabo-Revesz, P.: Amorphization of a crystalline active ingredient and thermoanalytical measurements on this glassy form. J. Therm. Anal. Calorim. 102, 243–247 (2010)

    Article  Google Scholar 

  50. Mikhailenko, M.A., Shakhtshneider, T.P., Debushchak, V.A., Kuznetsova, S.A., Skvortsova, G.P., Boldyrev, V.V.: Influence of mechanical treatment on the properties of betulin, betulin diacetate, and their mixture with water-soluble polymers. Chem. Nat. Compd. 47(2), 229–233 (2011)

    Article  Google Scholar 

  51. Kakran, M., Sahoo, N.G., Li, L.: Dissolution enhancement of quercetin through nanofabrication, complexation and solid dispersion. Colloids Surf. B. Biointerfaces 88(1), 121–130 (2011)

    Article  Google Scholar 

  52. Babar, I., Asgar, A., Javed, A., Sanjula, B., Sonal, G., Schweta, D., Shadab, M., Jasjeet, K.S.: Recent advances and patents in solid dispersion technology. Recent Pat Drug Deliv Formul 5(3), 244–264 (2011)

    Article  Google Scholar 

  53. Makhlof, A., Miazaki, Y., Tozuka, Y., Takeuchi, H.: Cyclodextrin as stabilizers for the preparation of drug nanocrystals by the emulsion solvent diffusion method. Int. J. Pharm. 357(1–2), 280–285 (2008)

    Article  Google Scholar 

  54. McNamara, D.P., Childs, S.I., Giordano, J., Iarriccio, A., Cassidy, J., Shet, M.S., et al.: Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm. Res. 23, 1888–1897 (2006)

    Article  Google Scholar 

  55. Elibogen, M.H., Olsen, K.M., Gentry-Nielsen, M.J., Preheim, L.C.: Efficacy of liposome-encapsulated ciprofloxacin compared with ciprofloxacin and ceftriaxone in a rat model of pneumoccoccal pneumonia. J. Antimicrob. Chemother. 51(1), 83–91 (2003)

    Article  Google Scholar 

  56. Miro, A., Quaglia, F., Giannini, L., Capello, B., La Rontonda, M.I.: Drug/cyclodextrin solid systems in the design of hydrophilic matrices: a strategy to modulate drug delivery rate. Curr. Drug Deliv. 3(4), 373–378 (2006)

    Article  Google Scholar 

  57. Gil, A., Chamayou, A., Leverd, E., Bougaret, J., Baron, M., Couarraze, G.: Evolution of the interaction of a new chemical entity, eflucimibe, with gamma-cyclodextrin during kneading process. Eur. J. Pharm. Sci. 23, 123–129 (2004)

    Article  Google Scholar 

  58. Hutin, S., Avan, J.L., Paillard, B., Baron, M., Couarraze, G., Bougaret, J.: Analysis of a kneading process to evaluate drug substance-cyclodextrin complexation. Pharm. Technol. 28, 112–124 (2004)

    Google Scholar 

  59. Fages, J., Rodier, E., Chamayou, A., Baron, M.: Comparative study of two processes to improve the bioavailability of an active pharmaceutical ingredient: kneading and supercritical technology. KONA 25, 217–229 (2007)

    Google Scholar 

  60. Agueros, M., Zabaleta, V., Espuelas, S., Campanero, M.A., Irache, J.M.: Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride)nanoparticles. J. Controlled Release 145(1), 2–8 (2010)

    Article  Google Scholar 

  61. Dhumal, R.S., Kelly, A.L., York, P., Coates, P.D., Paradkar, A.: Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm. Res. 27, 2725–2733 (2010)

    Article  Google Scholar 

  62. Rosado Balmayor, E., Sepulveda Azevedo, H., Reis, R.L.: Controlled delivery systems: from pharmaceuticals to cells and genes. Pharm. Res. 28, 1241–1258 (2011)

    Article  Google Scholar 

  63. Cabane, E., Malinova, V., Menon, S., Palivan, C.G., Meier, W.: Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter 7, 9167–9176 (2011)

    Article  Google Scholar 

  64. Fukushima, K., Ise, A., Morita, H., Hasegawa, R., Ito, Y., Sugioka, N., Takada, K.: Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm. Res. 28(1), 7–21 (2011)

    Article  Google Scholar 

  65. Lee, D.H., Kang, S.G., Jeong, S., Yoon, C.J., Choi, J.A., Byun, J.N., Park, J.H., Lee, K.B.: Local delivery system of immune modulating drug for unresectable adenocarcinoma: in vitro experimental study and in vivo animal study. Cardiovasc. Interv. Radiol. 29(5), 832–837 (2006)

    Article  Google Scholar 

  66. Aburai, K., Yagi, N., Yokoyama, Y., Okuno, H., Sakai, K., Sakai, H., Sakamoto, K., Abe, M.: Preparation of liposomes modified with lipopeptides using a supercritical carbon dioxyde reverse-phase evaporation method. J. Oleo Sci. 60(5), 209–215 (2011)

    Article  Google Scholar 

  67. Cue, B.W., Berridge, J., Manley, J.B.: PAT & green chemistry: the intersection of benign by design and quality by design. Pharm. Engin. 29, 8–20 (2009)

    Google Scholar 

  68. Ho, S.V., McLaughlin, J.M., Cue, B.W., Dunn, P.J.: Environmental considerations in biologics manufacturing. Green Chem. 12, 755–766 (2010)

    Article  Google Scholar 

  69. Lehmann, H., La Vecchia, L.: Scale-up of organic reactions in a pharmaceutical Kilo-lab using a commercial microwave reactor. Org. Process Res. Dev. 14, 650–656 (2010)

    Article  Google Scholar 

  70. Luche, J.L.: Synthetic Organic Chemistry. Plenum Press, New York (1998)

    Google Scholar 

  71. Louisnard, O.: A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerknes force and bubble structures. Ultrason. Sonochem. 19(1), 66–76 (2012)

    Article  Google Scholar 

  72. Buchholtz, S.: Future manufacturing approaches in the chemical and pharmaceutical industry. Chem. Eng. Process. 49, 993–995 (2010)

    Article  Google Scholar 

  73. Sheldon, R.A.: Green solvents for sustainable organic synthesis: state of the art. Green Chem. 7(5), 267–278 (2005)

    Article  Google Scholar 

  74. Carlier, L., Baron, M., Chamayou, A., Couarraze, G.: Use of co-grinding as a solvent-free state method to synthesize dibenzophenazines. Tetrahedron Lett. 52, 4686–4689 (2011)

    Article  Google Scholar 

  75. Carlier L., Baron M., Chamayou A., Couarraze G.: Greener pharmacy using solvent-free synthesis: investigation of the mechanism in the case of dibenzophenazines. Powder Technol. doi:10.1016/j.powtec.2012.07.009 (2012)

  76. Federsel, H.-J.: In search of sustainability: process R&D in light of current pharmaceutical industry challenges. Drug Discov. Today 11(21/22), 966–974 (2006)

    Article  Google Scholar 

  77. Baron, M., Chamayou, A., Carlier, L., Couarraze, G.: Dibenzophenazines synthesis by a smart green process. In: Proceedings of the 2nd International Conference on Environmental Pollution and Remediation. Montreal, Quebec, Canada, 28–30 August 2012, paper no 105, 1–4 (in press)

  78. De Braal, H.: Sustainability in green pharmaceutical production. Pharm. Technol. Eur. 21, 1, (2009), http://pharmtech.findpharma.com/pharmtech/article/articleDetail.jsp?id=574860. Accessed 14 Oct 2011

  79. Ma, S.K., Gruber, J., Davis, C., Newman, L., Gray, D., Wang, A., Grate, G., Huisman, G.W., Sheldon, R.A.: A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem. 12, 81–86 (2010)

    Article  Google Scholar 

  80. Rozzell, D., Codexis Inc.: Greener chemical processes from biocatalysis. http://www.codexis.com/pdf/Pharmachem_1008.pdf. Accessed 20 Oct 2011

  81. Savile, C.K., Janey, J.M., Mundorff, E.C., Moore, J.C., Tam, S., Jarvis, W.R., Colbeck, J.C., Krebber, A., Fleitz, F.J., Brands, J., Devine, P.N., Huisman, G.W., Hugues, G.J.: Biocatalytic asymetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329(5989), 305–309 (2010)

    Article  Google Scholar 

  82. FDA, Process Analytical Technology (PAT)—Initiative http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm088828.htm. Accessed 14 Oct 2011

  83. Gendre, C., Genty, M., Boiret, M., Julien, M., Meunier, L., Lecoq, O., Baron, M., Chaminade, P., Pean, J.-M.: Development of a Process Analytical Technology (PAT) for in-line monitoring of film thickness and mass of coating materials during a pan coating operation. Eur. J. Pharm. Sci. 43, 244–250 (2011)

    Article  Google Scholar 

  84. Trout, B., Bisson, W.: Continuous manufacturing of small molecule pharmaceuticals. The Ultra Lean Way of Manufacturing. http://ilp-www.mit.edu/images/conferencemedia/trout.pdf. Accessed 14 Oct 2011

  85. Klimesch, R., Mrosek, W., Bleckmann, G., Farwerk, K-P., Sanner, A., Schlemmer, L.: Process for the preparation of pharmaceutical tablets. EP 0358107 to BASF (1990)

  86. Ivo Backx.: Changing the clock speed. http://Users/baron/Desktop/GSK%20and%20Siemens%20continuous%20tablet%20manufacture.html. Accessed 10 Oct 2011

  87. Berthiaux, H., Marikh, K., Gatumel, C.: Continuous mixing of powder mixtures with pharmaceutical constraints. Chem. Eng. Process. 47(12), 2315–2322 (2008)

    Article  Google Scholar 

  88. Cordi, E.M., Schofield, R.: Leveraging green metrics for route selection and process optimization. http://www.pharmamanufacturing.com/articles/2011/053.html. Accessed 14 Oct 2011

  89. Schaber, S.D., Gerogiorgis, D.I., Ramachandran, R., Evans, J.M.B., Barton, P.I., Trout, B.L.: Economic analysis of integrated continuous and batch pharmaceutical manufacturing: a case study. Ind. Eng. Chem. Res. 50(17), 10083–10092 (2011)

    Article  Google Scholar 

  90. Mirani, A.G., Patankar, S.P., Borole, V.S., Pawar, A.S., Kadam, V.J.: Curr. Drug Deliv. 8(4), 426–435 (2011)

    Article  Google Scholar 

  91. Tayel, S.A., Soliman, I.I., Louis, D.: Formulation of ketotifen fumarate fast-melt granulation sublingal tablet. AAPS Pharmscitech 11(2), 679–685 (2010)

    Article  Google Scholar 

  92. Desiré, A., Paillard, B., Bougaret, J., Baron, M., Couarraze, G.: Comparison between three extrusion systems on the properties of pellets prepared by extrusion-spheronisation—I: influence of water content and extrusion speed. Pharm. Technol. North Am. 35(1), 56–65 (2011)

    Google Scholar 

  93. Desiré, A., Paillard, B., Bougaret, J., Baron, M., Couarraze, G.: A comparison of three extrusion systems—Part II: influence of formulation and spheronization conditions on pellet properties. Pharm. Technol. North Am. 35(6), 56–61 (2011)

    Google Scholar 

  94. Ouabbas, Y., Dodds, J., Chamayou, A., Galet, L., Baron, M.: Particle-particle coating in a cyclomix impact mixer. Powder Technol. 189, 245–252 (2009)

    Article  Google Scholar 

  95. Ouabbas, Y., Chamayou, A., Galet, L., Baron, M., Thomas, G., Grosseau, P., Guilhot, B.: Surface modification of silica particles by dry coating: characterization and powder ageing. Powder Technol. 190(1–2), 200–209 (2009)

    Article  Google Scholar 

  96. Ouabbas, Y., Thomas, G., Grosseau, P., Guilhot, B., Baron, M., Chamayou, A., Galet, L.: Surface analysis of silicagel particles after mechanical coating with magnesium stearate materials. Appl. Surf. Sci. 255(17), 7500–7507 (2009)

    Article  Google Scholar 

  97. Gera, M., Sahara, V.A., Kataria, M., Kukkar, V.: Mechanical methods for dry particle coating processes and their applications in drug delivery and development. Recent Pat Drug Deliv Formul 4(1), 58–81 (2010)

    Article  Google Scholar 

  98. FDA, Disposal of unused medecines: What you should know: http://Users/baron/Desktop/Review%20Waste%20Biomass%20Valor/recyclage%20medicaments/Safe%20Disposal%20of%20Medicines%20%3E%20Disposal%20of%20Unused%20Medicines:%20What%20You%20Should%20Know.webarchive. Accessed 8 June 2012

  99. Cook, S.M., VanDuinen, B.J., Love, N.G., Skerlos, S.J.: Life cycle comparison of environmental emissions from three disposal options for unused pharmaceuticals. Environ. Sci. Technol. 46(10), 5535–5541 (2012)

    Article  Google Scholar 

  100. Pomerantz, J.M.: Recycling expensive medication: why not? Med. Gen. Med. 6, 2–4 (2004)

    Google Scholar 

  101. FDA, Guidelines for submitting supporting documentation in drug applications for the manufacture of drug products. http://Users/baron/Desktop/Review%20Waste%20Biomass%20Valor/recyclage%20medicaments/Guidances%20(Drugs)%20%3E%20GUIDELINE%20FOR%20SUBMITTING%20SUPPORTING%20DOCUMENTATION%20IN%20DRUG%20APPLICATIONS%20FOR%20THE%20M.webarchive. Accessed 8 June 2012

Download references

Acknowledgments

Some case studies cited in this article were made by former and present coworkers and Ph’D students in our research center RAPSODEE (Ecole des Mines d’Albi-CNRS-Université de Toulouse-France) and/or Spin Center (Ecole des Mines de St Etienne, France) and/or Paris South-XI University—France, whose names appear only in the reference list. The author expresses his sincere appreciation for their tremendous efforts invested in their research works. Financial supports are also appreciated, among others those from the Ministry of Economy, Finances and Industry, from the Centre National de la Recherche Scientifique (CNRS) and from the Agence Nationale pour la Recherche (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Baron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baron, M. Towards a Greener Pharmacy by More Eco Design. Waste Biomass Valor 3, 395–407 (2012). https://doi.org/10.1007/s12649-012-9146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9146-2

Keywords

Navigation