Skip to main content
Log in

Band gap dependence of semiconducting nano-wires on cross-sectional shape and size

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Applicability of three different thermodynamic models based on classical (Qi model) as well as quantum approach (Lu et al. and Jiang et al. models) have been discussed to search out the exact description of band gap variation with size in semiconducting nanowires. All considered models showed an increment in the band gap as diametric size of the wire decreases. To study band gap and the band edge shift of nanowires, a novel approach has been proposed by incorporating shape effect with size in Jiang et al. model due to its accuracy or consistency with the experimental results. Hence a unified model without any adjustable parameter has been established for studying the combined effect of size and shape on band edges shift [∆Ec (D), ∆Ev (D)] and the band gap expansion [∆EG (D)] of the semiconducting nanowires. Present study reveals that for small-sized nanowires band gap expansion and edge shift is not only governed by size but also varies with the cross-sectional shape. Band gap expansion and edge shift showed rising behavior due to the enhancement in surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P C Ray Chem. Rev. 110 5332 (2010)

    Article  Google Scholar 

  2. O C Farokhzad and R Langer ACS Nano 3 16 (2009)

    Article  Google Scholar 

  3. V L Colvin Nat. Biotechnol. 21 1166 (2003)

    Article  Google Scholar 

  4. F Baletto and R Ferrando Rev. Mod. Phys. 77 371 (2005)

    Article  ADS  Google Scholar 

  5. A Piryatinski, S A Ivanov, S Tretiak, and V I Klimov Nano Lett. 7 108 (2007)

    Article  ADS  Google Scholar 

  6. C Bostedt et al. Appl. Phys. Lett. 84 4056 (2004)

    Article  ADS  Google Scholar 

  7. G Shen and D Chen Front. Optoelectron. China 3 125 (2010)

    Article  Google Scholar 

  8. S Barth, F Hernandez-Ramirez, J D Holmes and A Romano-Rodriguez Prog. Mater. Sci. 55 563 (2010)

    Google Scholar 

  9. A M Smith and S Nie Acc. Chem. Res. 43 190 (2010)

    Article  Google Scholar 

  10. LT Canham Appl. Phys. Lett. 57 1046 (1990)

    Google Scholar 

  11. H Takagi, H Ogawa, Y Yamazaki, A Ishizaki, and T Nakagiri Appl. Phys. Lett. 56 2379 (1990)

    Article  ADS  Google Scholar 

  12. Y Kayanuma Phys. Rev. B 38 9797 (1988)

    Article  ADS  Google Scholar 

  13. S Sapra and D D Sarma Phys. Rev. B 69 125304 (2004)

    Article  ADS  Google Scholar 

  14. K F Brennan et al. Solid-State Electron. 44 195 (2000)

    Article  ADS  Google Scholar 

  15. AL Efros and A L Efros Sov. Phys. Semicond. 16 772 (1982)

  16. H M Lu, P Y Li, Z H Cao, and X K Meng J. Phys. Chem. C 113 7598 (2009)

    Article  Google Scholar 

  17. Q Jiang, H Y Tong, D T Hsu, K Okuyama and F G Shi Thin Solid Films 312 357 (1998)

    Article  ADS  Google Scholar 

  18. W H Qi Phys. B Condens Matter. 368 46 (2005)

  19. M L Braunger, C A Escanhoela Jr, I Fier, L Walmsley and E C Ziemath J. Non-Cryst. Solids 358 2855 (2012)

    Article  ADS  Google Scholar 

  20. M Li and J C Li Mater.Lett. 60 2526 (2006)

    Article  Google Scholar 

  21. R Zallen The Physics of Amorphous Solids (Newyork: Wiley) Chapter 6, p 277 (1983)

  22. J H Rose, J. Ferrante, and J R Smith Phys. Rev.B 25 1419 (1982)

    Article  ADS  Google Scholar 

  23. W H Qi Acc. Chem. Res. 49 1587 (2016)

    Article  Google Scholar 

  24. Z Zhang, M Zhang and Q Jiang Semicond. Sci. Tech 16 L33 (2001)

    ADS  Google Scholar 

  25. B Piccione, R Agarwal, Y Jung, and R Agarwal Philos. Mag. 93 2089 (2013)

    Article  ADS  Google Scholar 

  26. C Q Chen, Y Shi, Y S Zhang, J Zhu and Y J Yan PRL 96 075505 (2006)

    Google Scholar 

  27. H M Lu, F Q Han and X K Meng J. Phys. Chem. B 112 9444 (2008)

    Article  Google Scholar 

  28. J-W Zhao et al. Scientific Reports | 5:17692 (2015)| dOI: 10.1038/srep17692

  29. M P Persson and H Q Xu Phys. Rev. B 73 125346 (2006)

    Article  ADS  Google Scholar 

  30. M Yan, G Dai, S Hu, Q Zhang, B Zou Mater Lett. 65 2522 (2011)

    Article  Google Scholar 

  31. W H Qi, B Y Huang, M P Wang, Z M Yin and J Li Phys. B 403 2386 (2008)

    Article  Google Scholar 

  32. T V Buuren, L N Dinh, L L Chase, W J Siekhaus, and L J Terminello Phys. Rev. Lett 80 3803 (1998)

    Article  ADS  Google Scholar 

  33. L Brus J. Phys. Chem. 90 2555 (1986)

    Article  Google Scholar 

  34. V L Colvin, A P Alivisatos, and J G Tobin Phys. Rev. Lett. 66 2786 (1991)

    Article  ADS  Google Scholar 

  35. D W Palmer, http://www.semiconductors.co.uk/.

  36. R C Weast, CRC Handbook of Chemistry and Physics (Boca Raton, FL: CRC Press) 69th ed., E-112 (1988–1989)

  37. J Xiao, Y Xie, R Tang, and W Luo Inorg. Chem. 42 107 (2003)

    Article  Google Scholar 

  38. H Yu, J Li, R A Loomis, L-W Wang and W E Buhro Nat. Mater. 2 517 (2003)

    Google Scholar 

  39. C P Foley and T L Tansley Phys. Rev. B 33 1430 (1986)

    Article  ADS  Google Scholar 

  40. Lev I Berger, Semiconductor Materials (Boca Raton Newyork: London Tokyo: CRC Press) Chapter 5, p 202 (1996)

  41. J Li and L-W Wang Phys. Rev. B 72 125325 (2005)

    Article  ADS  Google Scholar 

  42. D J Carter, J D Gale, B Delley, and C Stampfl Phys. Rev. B 77 115349 (2008)

    Article  ADS  Google Scholar 

  43. R Kooley, E G veld, D Vanmaekelbergh, A Meijerink and C de Mello Donegá Nanoparticles C de Mello Donega Chapter 2 13 (2014)

    Google Scholar 

  44. E O Chukwuocha, M C Onyeaju, T S T Harry World J. Condens. Matter Phys. 2 96 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Arora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, N., Joshi, D.P. Band gap dependence of semiconducting nano-wires on cross-sectional shape and size. Indian J Phys 91, 1493–1501 (2017). https://doi.org/10.1007/s12648-017-1052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1052-9

Keywords

PACS Nos.

Navigation