Skip to main content
Log in

Arbitrary amplitude solitary waves in an unmagnetized quantum pair-ion plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Propagation of arbitrary amplitude solitary waves is investigated in an unmagnetized quantum pair-ion plasma through the usage of Sagdeev pseudopotential approach in the framework of quantum hydrodynamics model. Bohm potential is elucidated to have significant impact on the structure of solitary wave. We would like to demonstrate that the regions of stability for the solitary waves of this quantum plasma system are well determined by studying the phase portrait. Analytical calculations are employed to simplify the basic equations, which are then studied numerically. The numerical analysis of Sagdeev potential for small value of quantum diffraction parameter(H) shows that for such plasma, there exists only compressive solitons. The effect of different plasma parameters on the solitonic structure are traced .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W Oohara and R Hatakeyama Phys. Rev. Lett. 91 205005 (2003)

    Article  ADS  Google Scholar 

  2. W Oohara, D Date and R Hatakeyama Phys. Rev. Lett. 95 175003 (2005)

    Article  ADS  Google Scholar 

  3. R Hatakeyama and W Oohara Phys. Scripta 116 101 (2005)

    Article  Google Scholar 

  4. W Oohara, Y Kuwabara and R Hatakeyama Phys. Rev. E 75 056403 (2007)

    Article  ADS  Google Scholar 

  5. W Oohara and R Hatakeyama Phys. Plasmas 14 055704 (2007)

    Article  ADS  Google Scholar 

  6. M Rapp, J Hedin, I Strelnikova, M Friedrich, J Gumbel and F J Lubken Geophys. Res. Lett. 32 123821 (2005).

    Article  Google Scholar 

  7. S Mahmood and H Ur-Rehman Phys.Plasma 17 072305 (2010)

    Article  ADS  Google Scholar 

  8. W M Moslem, I Kourakis and P K Shukla Phys. Plasma 14 032107 (2007)

    Article  ADS  Google Scholar 

  9. Q Z Luo, N D Algelo and R L Merlino Phys. Plasma 5 2868 (1998)

    Article  ADS  Google Scholar 

  10. J L Cooney, M T Gavin, I Tao and K E Lonngren IEEE Trans. Plasma Sci. 19 1259 (1991)

    Article  ADS  Google Scholar 

  11. A P Misra and N K Ghosh Astrphys. Space Sci. 331 605 (2011)

    Article  ADS  Google Scholar 

  12. L O Silva, R Bingham, J M Dawson, J T Mendonca and P K Shukla Phys. Rev. Lett. 83 2703 (1999)

    Article  ADS  Google Scholar 

  13. P A Markowich, C A Ringhofer and C Schmeiser Semiconductor Equations (eds) W M Coughran, J C Peter Lioyd and J K White (New York: Springer-Verlag) p 320 (1990)

  14. M Murklund and P K Shukla Rev. Mod. Phys. 78 591 (2006)

    Article  ADS  Google Scholar 

  15. M Leontovich and I A Nauk SSR Ser. Fiz. Mat. Nauk 8 16 (1994)

    Google Scholar 

  16. D Gloge and D Marcuse J. Opt. Soc. Am. 59 1629 (1969)

    Article  ADS  Google Scholar 

  17. S Ali, H Tercas and J T Mendonca Phy. Rev. B 83 153401 (2011)

    Article  ADS  Google Scholar 

  18. F Haas, L G Garcia, J Goedert and G Manfredi Phys. Plasmas 10 3858 (2003)

    Article  ADS  Google Scholar 

  19. H Ren, Z Wu, J Cao and P K Zhu J. Phys. A 41 115501 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  20. P Chatterjee, K Roy, G Mondal, S V Muniandy, S L Yap and C S Wong Phys. Plasmas 16 122112 (2009)

    Article  ADS  Google Scholar 

  21. S Ali, W M Moslem, P K Shukla and R Schlickeiser Phys. Plasmas 14 082307 (2007)

    Article  ADS  Google Scholar 

  22. A Mushtaq and S A Khan Phys. Plasmas 14 052307 (2007)

    Article  ADS  Google Scholar 

  23. H Tercas, J T Mendonca and P K Shukla Phys. Plasmas 15 072109 (2008)

    Article  ADS  Google Scholar 

  24. Z Wu, H Ren, J Cao and P K Chu Phys. Plasmas 15 082103 (2008)

    Article  ADS  Google Scholar 

  25. M R Rouhani, A Akbarian and Z Mohammadi Phys. Plasmas 20 082303 (2013)

    Article  ADS  Google Scholar 

  26. I Nagy Phys. Rev. B 52 1497 (1995)

    Article  ADS  Google Scholar 

  27. C Gardner SIAM J. Appl. Math. 54 409 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  28. R K Roychoudhury and S Bhattacharya Can. J. Phys. 65 699 (1987)

    Article  ADS  Google Scholar 

  29. S Baboolal, R Bharuthram and M A Hellberg J. Plasma Phys. 40 163 (1988)

    Article  ADS  Google Scholar 

  30. R L Mace, S Baboolal, R Bharuthram and M A Hellberg J. Plasma Phys. 45 323 (1991)

    Article  ADS  Google Scholar 

  31. Y Nejoh and H Sanuki Phys. Plasmas 2 4122 (1995)

    Article  ADS  Google Scholar 

  32. R K Roychoudhury, S Bhattacharyya and Y P Varshini Can. J. Phys. 68 1 (1990)

    Article  Google Scholar 

  33. B Buti Phys. Lett. A 76 251 (1980)

    Article  ADS  Google Scholar 

  34. R Z Sagdeev Reviews of Plasma Physics (ed) M A Leontovich (New York: Consultants Bureau) p 23 (1966)

  35. H H Kuehl and K Imen IEEE Trans. Plasma Sci. 13 37 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, D. Arbitrary amplitude solitary waves in an unmagnetized quantum pair-ion plasma. Indian J Phys 90, 709–715 (2016). https://doi.org/10.1007/s12648-015-0792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0792-7

Keywords

PACS Nos.

Navigation