Skip to main content
Log in

Prospects of the Emerging Raman Scattering Tools for Surface and Nanoanalysis

  • Review Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Demands for label free chemical characterisation in ambient conditions are ever increasing. Only a handful of ambient techniques can provide chemical and structural information with sub micrometre spatial resolution. Raman scattering is a promising method for surface and nanoanalysis for micro- to nanometre length scale characterisation. This article gives an overview of the emerging Raman scattering tools, current state of the art, applications and standardisation requirement for the techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.R. Masters and P.T.C. So, Biomedical nonlinear optical microscopy, Oxford University Press, New York (2008).

    Google Scholar 

  2. M.P. Seah, Quantification of AES and XPS, In: D. Briggs and M.P. Seah (Eds) Practical surface analysis, Wiley, Chichester, pp. 201–255 (1990).

    Google Scholar 

  3. J.C. Vickerman and G. Is, Surface analysis—the principal techniques, Wiley, New York (2009).

    Book  Google Scholar 

  4. G. Binnig, C. Gerber, E. Stoll, T.R. Albrecht and C.F. Quate, Atomic resolution with atomic force microscope, Europhys. Lett., 3 (1987), 1281–1286.

    Article  ADS  Google Scholar 

  5. R. Zhang, Y. Zhang, Z.C. Dong, S. Jiang, C. Zhang, L.G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J.L. Yang and J.G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature, 498(7452) (2013), 82–86.

    Article  ADS  Google Scholar 

  6. J.W. Lichtman and J.A. Conchello, Fluorescence microscopy, Nat. Methods, 2(12) (2005), 910–919.

    Article  Google Scholar 

  7. C.T. Dollery, Intracellular drug concentrations, Clin. Pharmacol. Ther., 93(3) (2013), 263–266.

    Article  Google Scholar 

  8. C.A. Clifford and M.P. Seah, Quantification issues in the identification of nanoscale regions of homopolymers using modulus measurement via AFM nanoindentation, Appl. Surf. Sci., 252(5) (2005), 1915–1933.

    Article  ADS  Google Scholar 

  9. J.X. Cheng and X.S. Xie, Coherent Raman scattering microscopy, CRC Press, Boca Raton (2013).

    Google Scholar 

  10. C.V. Raman and K.S. Krishnan, A new type of secondary radiation, Nature, 121(3048) (1928), 501.

    Article  ADS  Google Scholar 

  11. D.L. Jeanmaire and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem. Interfacial. Electrochem., 84(1) (1977), 1–20.

    Article  Google Scholar 

  12. R. Stosch, A. Henrion, D. Schiel and B. Guttler, Surface-enhanced Raman scattering based approach for quantitative determination of creatinine in human serum, Anal. Chem., 77(22) (2005), 7386–7392.

    Article  Google Scholar 

  13. P. Etchegoin, R.C. Maher, L.F. Cohen, H. Hartigan, R.J.C. Brown, M.J.T. Milton and J.C. Gallop, New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS), Chem. Phys. Lett., 375(1–2) (2003), 84–90.

    Article  ADS  Google Scholar 

  14. D. Roy, Z.H. Barber and T.W. Clyne, Ag nano-particle induced surface enhanced Raman spectroscopy of chemical vapor deposition diamond thin films prepared by hot filament chemical vapor deposition, J. Appl. Phys., 91(9) (2002), 6085–6088.

    Article  ADS  Google Scholar 

  15. D. Roy, J. Wang and M. Welland, Nanoscale imaging of carbon nanotubes using tip enhanced Raman spectroscopy in reflection mode, Faraday Discuss., 132 (2006), 215–225.

    Article  ADS  Google Scholar 

  16. O. Sqalli, I. Utke, P. Hoffmann and F. Marquis-Weible, Gold elliptical nanoantennas as probes for near field optical microscopy, J. Appl. Phys., 92(2) (2002), 1078–1083.

    Article  ADS  Google Scholar 

  17. S. Zakel, S. Wundrack, G. O’Connor, B. Guttler and R. Stosch, Validation of isotope dilution surface-enhanced Raman scattering (IDSERS) as a higher order reference method for clinical measurands employing international comparison schemes, J. Raman Spectrosc., 44(9) (2013), 1246–1252.

    Article  ADS  Google Scholar 

  18. E.H. Synge, A suggested method for extending the microscopic resolution into the ultramicroscopic region, Philos. Mag., 6(356) (1928), 1928.

    Google Scholar 

  19. D.W. Pohl, W. Denk and M. Lanz, Optical stethoscopy: image recording with resolution λ/20, Appl. Phys. Lett., 44(7) (1984), 651–653.

    Article  ADS  Google Scholar 

  20. F. Zenhausern, Y. Martin and H.K. Wickramasinghe, Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution, Science, 269(5227) (1995), 1083.

    Article  ADS  Google Scholar 

  21. P. Adam, Fluorescence imaging of submicrometric lattices of colour centres in LiF by an apertureless scanning near field optical microscope, Opt. Express, 9 (2001), 353.

    Article  ADS  Google Scholar 

  22. R. Hillenbrand and F. Keilmann, Material specific mapping of metal/semiconductor dielectric nanosystems at 10 nm resolution by back scattering near-field microscopy, Appl. Phys. Lett., 80 (2002), 25.

    Article  ADS  Google Scholar 

  23. X.S. Xie, A. Hartschuh, E.J. Sanchez and L. Novotny, High-resolution near-field Raman microscopy of single walled carbon nanotubes, Phys. Rev. Lett., 90 (2003), 095503.

    Article  ADS  Google Scholar 

  24. A. Hartschuh, H.N. Pedrosa, L. Novotny and T.D. Krauss, Simultaneous fluorescence and Raman scatting from single carbon nanotubes, Science, 301 (2003), 1354.

    Article  ADS  Google Scholar 

  25. A. Hartschuh, N. Anderson and L. Novotny, Near-field Raman spectroscopy using sharp metal tip, J. Microsc., 210 (2003), 234–240.

    Article  MathSciNet  Google Scholar 

  26. E.O. Potma and X.N. Xie, Theory of spontaneous and coherent Raman scattering, In: B.R. Masters and P.T.C. So (Eds) Handbook of biomedical optical microscopy, Oxford University Press, Oxford, pp 164–185 (2008).

    Google Scholar 

  27. B. Littleton, T. Kavanagh, F. Festy and D. Richards, Spectral interferometric implementation with passive polarization optics of coherent anti-Stokes Raman scattering, Phys. Rev. Lett., 111(10) (2013), 103902.

    Article  ADS  Google Scholar 

  28. M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund, Science of fullerenes and carbon nanotubes, Academic Press, Inc., New York (1996).

    Google Scholar 

  29. M.S. Dresselhaus, G. Dresselhaus and A. Jorio, Raman spectroscopy of carbon nanotubes in 1997 and 2007, J. Phys. Chem. C, 111(48) (2007), 17887–17893.

    Article  Google Scholar 

  30. L.M. Malard, M.A. Pimenta, G. Dresselhaus and M.S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 473(5–6) (2009), 51–87.

    Article  ADS  Google Scholar 

  31. D. Roy, E. Angeles-Tactay, R.J.C. Brown, S.J. Spencer, T. Fry, T.A. Dunton, T. Young and M.J.T. Milton, Synthesis and Raman spectroscopic characterisation of carbon nanoscrolls, Chem. Phys. Lett., 465(4–6) (2008), 254–257.

    Article  ADS  Google Scholar 

  32. D. Roy, M. Chhowalla, H. Wang, N. Sano, I. Alexandrou, T.W. Clyne and G.A.J. Amaratunga, Characterisation of carbon nano-onions using Raman spectroscopy, Chem. Phys. Lett., 373 (2003), 52–56.

    Article  ADS  Google Scholar 

  33. C. Thomsen and S. Reich, Double resonant Raman scattering in graphite, Phys. Rev. Lett., 85(24) (2000), 5214–5217.

    Article  ADS  Google Scholar 

  34. A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61(20) (2000), 14095–14107.

    Article  ADS  Google Scholar 

  35. L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala and A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett., 11(8) (2011), 3190–3196.

    Article  Google Scholar 

  36. J. Stadler, T. Schmid and R. Zenobi, Nanoscale chemical imaging of single-layer graphene, ACS Nano, 5(10) (2011), 8442–8448.

    Article  Google Scholar 

  37. W. Su and D. Roy, Visualizing graphene edges using tip-enhanced Raman spectroscopy, J. Vac. Sci. Technol. B, 31(4) (2013), 041808.

    Article  Google Scholar 

  38. A.C. Ferrari, Raman spectroscopy of amorphous carbon films: state of the art, N. Diam. Front. Carbon Technol., 14(2) (2004), 87–108.

    Google Scholar 

  39. D. Roy, M. Chhowalla, N. Hellgren, T.W. Clyne and G.A.J. Amaratunga, Probing carbon nano-particle in CN x thin films using Raman spectroscopy, Phys. Rev. B, 70 (2004), 035406.

    Article  ADS  Google Scholar 

  40. J.S. Kim, P.K.H. Ho, C.E. Murphy, N. Baynes and R.H. Friend, Nature of non-emissive black spots in polymer light-emitting diodes by in-situ micro-Raman spectroscopy, Adv. Mater., 14(3) (2002), 206–209.

    Article  Google Scholar 

  41. P.J. Pauzauskie, D. Talaga, K. Seo, P.D. Yang and F. Lagugne-Labarthet, Polarized Raman confocal microscopy of single gallium nitride nanowires, J. Am. Chem. Soc., 127(49) (2005), 17146–17147.

    Article  Google Scholar 

  42. S. Dhara, S. Chandra, G. Mangamma, S. Kalavathi, P. Shankar, K.G.M. Nair, A.K. Tyagi, C.W. Hsu, C.C. Kuo, L.C. Chen, K.H. Chen and K.K. Sriram, Multiphonon Raman scattering in GaN nanowires, Appl. Phys. Lett., 90(21) (2007), 213104.

    Article  ADS  Google Scholar 

  43. A. Patsha, P. Sahoo, S. Dhara, S. Amirthapandian and A.K. Tyagi, Probing crystallographic orientation of a single GaN nanotube using polarized Raman imaging, J. Raman Spectrosc., 44(5) (2013), 651–654.

    Article  ADS  Google Scholar 

  44. L. Bergman and R.J. Nemanich, Raman spectroscopy for characterization of hard, wide-bandgap semiconductors: diamond, GaN, GaAlN, AlN, BN, Annu. Rev. Mater. Sci., 26 (1996), 551–579.

    Article  ADS  Google Scholar 

  45. M. Kuball, Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control, Surf. Interface Anal. 31(10) (2001), 987–999.

    Article  Google Scholar 

  46. S. Nie and S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science, 275 (1997), 1102–1106.

    Article  Google Scholar 

  47. W.H. Zhang, B.S. Yeo, T. Schmid and R. Zenobi, Single molecule tip-enhanced Raman spectroscopy with silver tips, J. Phys. Chem. C, 111(4) (2007), 1733–1738.

    Article  Google Scholar 

  48. C.C. Neacsu, J. Dreyer, N. Behr and M.B. Raschke, Scanning-probe Raman spectroscopy with single-molecule sensitivity, Phys. Rev. B, 73(19) (2006), 193406.

    Article  ADS  Google Scholar 

  49. S. Dochow, N. Bergner, C. Matthäus, B.B. Praveen, P.C. Ashok, M. Mazilu, C. Krafft, K. Dholakia and J. Popp, Etaloning, fluorescence and ambient light suppression by modulated wavelength Raman spectroscopy, Biomed. Spectrosc. Imaging, 1(4) (2012), 383–389.

    Google Scholar 

  50. Z.J. Smith, F. Knorr, C.V. Pagba and S. Wachsmann-Hogiu, Rejection of fluorescence background in resonance and spontaneous Raman microspectroscopy, J. Vis. Exp., 51 (2011), e2592.

    Google Scholar 

  51. B.R. Wood, E. Bailo, M.A. Khiavi, L. Tilley, S. Deed, T. Deckert-Gaudig, D. McNaughton and V. Deckert, Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte, Nano Lett., 11(5) (2011), 1868–1873.

    Article  ADS  Google Scholar 

  52. B.G. Saar, L.R. Contreras-Rojas, X.S. Xie and R.H. Guy, Imaging drug delivery to skin with stimulated Raman scattering microscopy, Mol. Pharm., 8(3) (2011), 969–975.

    Article  Google Scholar 

  53. M. Miljkovic, T. Chernenko, M.J. Romeo, B. Bird, C. Matthaeus and M. Diem, Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets, Analyst, 135(8) (2010), 2002–2013.

    Article  ADS  Google Scholar 

  54. N. Stone, C. Kendall, N. Shepherd, P. Crow and H. Barr, Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers, J. Raman Spectrosc., 33(7) (2002), 564–573.

    Article  ADS  Google Scholar 

  55. J.C.C. Day and N. Stone, A subcutaneous Raman needle probe, Appl. Spectrosc., 67(3) (2013), 349–354.

    Article  ADS  Google Scholar 

  56. M. Almond, J. Hutchings, C. Kendall, N. Stone, N. Shepherd and H. Barr, Towards objective endoscopic diagnosis of early Barrett’s neoplasia using fibre-optic Raman spectroscopy. Gut, 61 (2012), A266–A266.

    Article  Google Scholar 

  57. C.L. Evans, E.O. Potma, M. Puoris’haag, D. Cote, C.P. Lin and X.S. Xie, Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy, Proc. Natl. Acad. Sci. USA, 102(46) (2005), 16807–16812.

    Article  ADS  Google Scholar 

  58. B.G. Saar, C.W. Freudiger, J. Reichman, C.M. Stanley, G.R. Holtom and X.S. Xie, Video-rate molecular imaging in vivo with stimulated Raman scattering, Science, 330(6009) (2010), 1368–1370.

    Article  ADS  Google Scholar 

  59. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui and K. Itoh, High-speed molecular spectral imaging of tissue with stimulated Raman scattering, Nat. Photonics, 6(12) (2012), 844–850.

    Article  ADS  Google Scholar 

  60. D. Fu, F.K. Lu, X. Zhang, C. Freudiger, D.R. Pernik, G. Holtom and X.S. Xie, Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy, J. Am. Chem. Soc., 134(8) (2012), 3623–3626.

    Article  Google Scholar 

  61. H. Rigneault and D. Gachet, Background-free coherent Raman imaging: the CARS and SRS contrast mechanisms, In: Raman imaging, Springer, Berlin, pp 347–372 (2012).

  62. C.W. Freudiger, W. Min, G.R. Holtom, B.W. Xu, M. Dantus and X.S. Xie, Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy, Nat. Photonics, 5(2) (2011), 103–109.

    Article  ADS  Google Scholar 

  63. L. Wei, Y. Yu, Y.H. Shen, M.C. Wang and W. Min, Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy, Proc. Natl. Acad. Sci. USA, 110(28) (2013), 11226–11231.

    Article  ADS  Google Scholar 

  64. J.C. Mansfield, G.R. Littlejohn, M.P. Seymour, R.J. Lind, S. Perfect and J. Moger, Label-free chemically specific imaging in planta with stimulated Raman scattering microscopy, Anal. Chem., 85(10) (2013), 5055–5063.

    Article  Google Scholar 

  65. D.L. Zhang, P. Wang, M.N. Slipchenko, D. Ben-Amotz, A.M. Weiner and J.X. Cheng, Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis, Anal. Chem., 85(1) (2013), 98–106.

    Article  Google Scholar 

  66. F. Ganikhanov, C.L. Evans, B.G. Saar and X.S. Xie, High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy, Opt. Lett., 31(12) (2006), 1872–1874.

    Article  ADS  Google Scholar 

  67. C.W. Freudiger, W. Min, B.G. Saar, S. Lu, G.R. Holtom, C.W. He, J.C. Tsai, J.X. Kang and X.S. Xie, Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy, Science, 322(5909) (2008), 1857–1861.

    Article  ADS  Google Scholar 

  68. N.K. Rai, A.Y. Lakshmanna, V.V. Namboodiri and S. Umapathy, Basic principles of ultrafast Raman loss spectroscopy, J. Chem. Sci., 124(1) (2012), 177–186.

    Article  Google Scholar 

  69. J. Lee, Y. Miyanaga, M. Ueda and S. Hohng, Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging, Biophys. J., 103(8) (2012), 1691–1697.

    Article  ADS  Google Scholar 

  70. R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S.W. Hell and M. Sauer, Single-molecule STED microscopy with photostable organic fluorophores, Small 6(13) (2010), 1379–1384.

    Article  Google Scholar 

  71. J. Mertz, C. Xu and W.W. Webb, Single-molecule detection by two-photon-excited fluorescence, Opt. Lett., 20(24) (1995), 2532–2534.

    Article  ADS  Google Scholar 

  72. R.D. Leapman and S.B. Andrews, Analysis of directly frozen macromolecules and tissues in the field-emission STEM. J. Microsc., 161(Pt 1) (1991), 3–19.

    Article  Google Scholar 

  73. M.A. Aronova and R.D. Leapman, Development of electron energy-loss spectroscopy in the biological sciences, MRS Bull., 37(1) (2012), 53–62.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from The National Measurement Systems (UK) and European Metrology Research Programme (EMRP) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdulal Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, D., Rae, A. Prospects of the Emerging Raman Scattering Tools for Surface and Nanoanalysis. MAPAN 28, 285–297 (2013). https://doi.org/10.1007/s12647-013-0092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-013-0092-7

Keywords

Navigation