Skip to main content
Log in

TNF-α Mediates the Intrinsic and Extrinsic Pathway in Propofol-Induced Neuronal Apoptosis Via PI3K/Akt Signaling Pathway in Rat Prefrontal Cortical Neurons

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Propofol can cause developing neuronal apoptosis in both in vivo and in vitro studies, and the mechanism is unclear till now. Our previous study has demonstrated that propofol can increase the TNF-α expression in the prefrontal cortex in rat developing brain, the TNF-α antagonist, etanercept, can inhibit propofol-induced neuronal apoptosis, but little is known about how TNF-α mediates that process. This study reveals that propofol at clinically relevant concentrations increases the TNF-α synthesis and release in neurons, and induces neuronal apoptosis; etanercept significantly reduces neuronal apoptosis, the elevation of cleaved caspase-8 and cleaved caspase-9, or the Akt phosphorylation induced by propofol, while the selective PI3K antagonist blocks the neuroprotection of etanercept. Propofol does not change the expression of P2X7 receptor in neurons, and the P2X7 receptor antagonist cannot affect the TNF-α synthesis or release after propofol treatment. These results suggest that propofol can increase the synthesis and release of TNF-α in the primary cultured prefrontal cortical neurons, TNF-α contributes to the intrinsic and extrinsic pathway in propofol-induced neuronal apoptosis via PI3K/Akt signaling pathway, and P2X7R is not involved in the synthesis and release of TNF-α induced by propofol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aderson CM, Nederaard M (2006) Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci 29:257–262

    Article  Google Scholar 

  • Arnsten AF, Wang M (2016) Targeting prefrontal cortical systems for drug development: potential therapies for cognitive disorders. Annu Rev Pharmacol Toxicol 56:339–360. doi:10.1146/annurev-pharmtox-010715-103617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudoin GM 3rd, Lee SH, Singh D, Yuan Y, Nq YG, Reichardt LF, Arikkath J (2012) Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc 7:1741–1754. doi:10.1038/nprot.2012.099

    Article  CAS  PubMed  Google Scholar 

  • Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  • Cantrell DA (2001) Phosphoinositide 3-kinase signalling pathways. J Cell Sci 114:1439–1445

    CAS  PubMed  Google Scholar 

  • Chen B, Deng X, Wang B, Liu H (2016a) Persistent neuronal apoptosis and synaptic loss induced by multiple but not single exposure of propofol contribute to long-term cognitive dysfunction in neonatal rats. J Toxicol Sci 41:627–636. doi:10.2131/jts.41.627

    Article  PubMed  Google Scholar 

  • Chen B, Deng X, Wang B, Liu H (2016b) Etanercept, an inhibitor of TNF-α, prevents propofol-induced neurotoxicity in the developing brain. Int J Devl Neurosci 55:91–100. doi:10.1016/j.ijdevneu.2016.10.002

    Article  Google Scholar 

  • Chu K, Yin B, Wang J, Peng G, Liang H, Xu Z, Du Y, Fang M, Xia Q, Luo B (2012) Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus. J Neuroinflammation 9:69. doi:10.1186/1742-2094-9-69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doll DN, Rellick SL, Barr TL, Ren X, Simpkins JW (2015) Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem 132:443–451. doi:10.1111/jnc.13008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flick RP, Katusic SK, Colligan RC, Wilder WT, Voigt RG, Olson MD, Sprung J, Weaver AL, Schroeder DR, Warner DO (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128:e1053–e1061. doi:10.1542/peds.2011-0351

    Article  PubMed  PubMed Central  Google Scholar 

  • Fredriksson A, Ponten E, Gordh T, Erikksson P (2007) Neonatal exposure to a combination of N-methyl-d-aspartate and γ-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology 107:427–436

    Article  CAS  PubMed  Google Scholar 

  • Hongliang L, Tijun D, Weitao G (2013) Isoflurane-induced neuronal apoptosis in developing hippocampal neurons. Neural Regen Res 8:825–832. doi:10.3969/j.issn.1673-5374.2013.09.007

    Google Scholar 

  • Jantas D, Greda A, Gołda S, Korostyński M, Lasoń W (2016) The neuroprotective effects of orthosteric agonist of group II and III mGluRs in primary neuronal cell cultures are dependent on developmental stage. Neuropharmacology 111:195–211. doi:10.1016/j.neuropharm.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey WS, Stratmann G, Leong J, Woodward E, Bickler PE (2012) Propofol at clinically relevant concentrations increases neuronal differentiation but is not toxic to hippocampal neural precursor cells in vitro. Anesthesiology 117:1080–1090. doi:10.1097/ALN.0b013e31826f8d86

    Article  Google Scholar 

  • Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23:876–882

    CAS  PubMed  Google Scholar 

  • Kahraman S, Zup SL, McCarthy MM, Fiskum G (2008) GABAergic mechanism of propofol toxicity in immature neurons. J Neurosurg Anesthesiol 20:233–240. doi:10.1097/ANA.0b013e31817ec34d

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JK, McCoy MK, Harms AS, Ruhn KA, Gold SJ, Tansey MG (2008) Regulator of G-protein signaling 10 promotes dopaminergic neuron survival via regulation of the microglial inflammatory response. J Neurosci 28:8517–8528. doi:10.1523/JNEUROSCI.1806-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemkuil BP, Head BP, Pearn ML, Patel HH, Drummond JC, Patel PM (2011) Isoflurane neurotoxicity is mediated by p75NTR-RhoA activation and actin depolymerization. Anesthesiology 14:49–57. doi:10.1097/ALN.0b013e318201dcb3

    Article  Google Scholar 

  • Lesuisse C, Martin LJ (2002) Immature and mature cortical neurons engage different apoptotic mechanisms involving caspase-3 and the mitogen-activated protein kinase pathway. J Cereb Blood Flow Metab 22:935–950

  • Milanović D, Pešić V, Popić J, Tanić N, Kanazir S, Jevtović-Todorović V, Ruždijić S (2014) Propofol anesthesia induces proapoptotic tumor necrosis factor-α and pro-nerve growth factor signaling and prosurvival Akt and XIAP expression in neonatal rat brain. J Neurosci Res 92:1362–1373. doi:10.1002/jnr.23409

    Article  PubMed  PubMed Central  Google Scholar 

  • Montgomery SL, Bowers WJ (2012) Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J NeuroImmune Pharmacol 7:42–59. doi:10.1007/s11481-011-9287-2

    Article  PubMed  Google Scholar 

  • Nakanishi M, Mori T, Nishikawa K, Sawada M, Asada A (2007) The effects of general anesthetics on P2X7 and P2Y receptors in a rat microglial cell line. Anesth Analg 104:1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Pearn ML, Hu Y, Niesman IR, Patel HH, Drummond JC, Roth DM, Akassoglou K, Patel PM, Head BP (2012) Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology 116:352–361. doi:10.1097/ALN.0b013e31842a48c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popić J, Pešić V, Milanović D, Lončarević-Vasiljković N, Smiljanić K, Kanazir S, Ruždijić S (2015) Induction of TNF-α signaling cascade in neonatal rat brain during propofol anesthesia. Int J Dev Neurosci 44:22–32. doi:10.1016/j.ijdevneu.2015.05.003

    Article  PubMed  Google Scholar 

  • Roh M, Zhang Y, Murakami Y, Thanos A, Lee SC, Vavvas DG, Benowitz LI, Miller JW (2012) Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One 7:e40065. doi:10.1371/journal.pone.0040065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprung J, Flick RP, Katusic SK, Colligan RC, Barbaresi WJ, Bojanić K, Welch TL, Olson MD, Hanson AC, Schroeder DR, Wilder RT, Warner DO (2012) Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc 87:120–129. doi:10.1016/j.mayocp.2011.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Stratmann G, Sall JW, May LD, Bell JS, Magnusson KR, Rau V, Visrodia KH, Alvi RS, Ku B, Lee MT, Dai R (2009) Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology 110:834–848. doi:10.1097/ALN.0b013e31819c463d

    Article  CAS  PubMed  Google Scholar 

  • Tewari M, Seth P (2015) Emerging role of P2X7 receptors in CNS health and disease. Aging Res Rev 24:328–342. doi:10.1016/j.arr.2015.10.001

    Article  CAS  Google Scholar 

  • Vutskits L, Gascon E, Tassonyi E, Kiss JZ (2005) Clinically relevant concentrations of propofol but not midazolam alter in vitro dendritic development of isolated gamma-aminobutyric acid-positive interneurons. Anesthesiology 102:970–976

  • Wang C, Sadovova N, Fu X, Schmued L, Scallet A, Hanig J, Slikker W (2005) The role of the N-methyl-D-aspartate receptor in ketamine-induced apoptosis in rat forebrain culture. Neuroscience 132:967–977

    Article  CAS  PubMed  Google Scholar 

  • Watters O, O’Connor JJ (2011) A role for tumor necrosis factor-α in ischemia and ischemic preconditioning. J Neuroinflammation 8:87. doi:10.1186/1742-2094-8-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Michelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804. doi:10.1097/01.anes.0000344728.34332.5d

    Article  PubMed  PubMed Central  Google Scholar 

  • Wirkner K, Köfalvi A, Fischer W, Günther A, Franke H, Gröger-Arndt H, Nörenberg W, Madarász E, Vizi ES, Schneider D, Sperlágh B, Illes P (2005) Supersensitivity of P2X receptors in cerebrocortical cell cultures after in vitro ischemia. J Neurochem 95:1421–1437

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Peng J, Yang L, Kong H, Yin F (2015) Interleukin-1β plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J Neuro-Oncol 282:110–117. doi:10.1016/j.jneuroim.2015.04.003

    CAS  Google Scholar 

  • Yon JH, Daniel-Johnson J, Carter LB, Jevtovic-Todorovic V (2005) Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135:815–827

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Cui G, Li W, Zhang X, Wang X, Zheng H, Zhang J, Xiang S, Xie Z (2016) Propofol enhances hemoglobin-induced cytotoxicity in neurons. Anesth Analg 122:1024–1030. doi:10.1213/ANE.0000000000001123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Li C, Wei W, Zhang H, Ma D, Song X, Zhou L (2016) Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci Rep 26:26865. doi:10.1038/srep26865

    Article  Google Scholar 

  • Zhou J, Ping FF, Lv WT, Feng JY, Shang J (2014) Interleukin-18 directly protects cortical neurons by activating PI3K/AKT/NF-κB/CREB pathways. Cytokine 69:29–38. doi:10.1016/j.cyto.2014.05.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation Project of CQ (cstc2016jcyjA0050). We would like to thank Lixue Chen, Guangcheng Qing, and Xiaoyun Dou for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Liu.

Ethics declarations

Conflict of Interest

All authors declared that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Chen, B., Wang, B. et al. TNF-α Mediates the Intrinsic and Extrinsic Pathway in Propofol-Induced Neuronal Apoptosis Via PI3K/Akt Signaling Pathway in Rat Prefrontal Cortical Neurons. Neurotox Res 32, 409–419 (2017). https://doi.org/10.1007/s12640-017-9751-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9751-8

Keywords

Navigation