Skip to main content
Log in

DT-diaphorase Protects Against Autophagy Induced by Aminochrome-Dependent Alpha-Synuclein Oligomers

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Alpha-synuclein (SNCA) oligomers have been reported to inhibit autophagy. Aminochrome-induced SNCA oligomers are neurotoxic, but the flavoenzyme DT-diaphorase prevents both their formation and their neurotoxicity. However, the possible protective role of DT-diaphorase against autophagy impairment by aminochrome-induced SNCA oligomers remains unclear. To test this idea, we used the cell line RCSN-3NQ7SNCA, with constitutive expression of a siRNA against DT-diaphorase and overexpression SNCA, and RCSN-3 as control cells. A significant increase in LC3-II expression was observed in RCSN-3 cells treated with 20 μM aminochrome and 10 μM rapamycin followed by a decrease in cell death compared to RCSN-3 cells incubated with 20 μM aminochrome alone. The incubation of RCSN-3NQ7SNCA cells with 20 μM aminochrome and 10 μM rapamycin does not change the expression of LC3-II in comparison with RCSN-3NQ7SNCA cells incubated with 20 μM aminochrome alone. The incubation of both cell lines preincubated with 100 nM bafilomycin and 20 μM aminochrome increases the level of LC3-II. Under the same conditions, cell death increases in both cell lines in comparison with cells incubated with 20 μM aminochrome. These results support the protective role of DT-diaphorase against SNCA oligomers-induced autophagy inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho W, Castillo P, Shinsky N, Verdugo J, Armanini M, Ryan A et al (2000) Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252

    Article  CAS  PubMed  Google Scholar 

  • Arriagada C, Paris I, Sanchez de las Matas M, Martinez-Alvarado P, Cardenas S, Castaneda P, Graumann R, Perez-Pastene C, Olea-Azar C, Couve E (2004) On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiol Dis 16:468–477

    Article  CAS  PubMed  Google Scholar 

  • Bellucci A, Zaltieri M, Navarria L, Grigoletto J, Missale C, Spano P (2012) From α-synuclein to synaptic dysfunctions: new insights into the pathophysiology of Parkinson’s disease. Brain Res 1476:183–202

    Article  CAS  PubMed  Google Scholar 

  • Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282(21):15597–15605

    Article  CAS  PubMed  Google Scholar 

  • Bisaglia M, Tosatto L, Munari F, Tessari I, de Laureto PP, Mammi S, Bubacco L (2010) Dopamine quinones interact with alpha-synuclein to form unstructured adducts. Biochem Biophys Res Commun 394(2):424–428

    Article  CAS  PubMed  Google Scholar 

  • Clayton DF, George JM (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21(6):249–254

    Article  CAS  PubMed  Google Scholar 

  • Conway K, Rochet J, Bieganski R, Lansbury P (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294:1346–1349

    Article  CAS  PubMed  Google Scholar 

  • Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A, Galasko D, Masliah E (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of α-synucleinopathy. PLoS One 5(e):9313

    Article  Google Scholar 

  • Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24(12):604–12. doi:10.1016/j.tig.2008.10.002

  • Cuervo A, Stefanis L, Fredenburg R, Lansbury P, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperonemediated autophagy. Science 305:1292–1295

    Article  CAS  PubMed  Google Scholar 

  • Domert J, Sackmann C, Severinsson E, Agholme L, Bergström J, Ingelsson M, Hallbeck M (2016) Aggregated alpha-synuclein transfer efficiently between cultured human neuron-like cells and localize to lysosomes. PLoS One 11(12):e0168700. doi:10.1371/journal.pone.0168700

  • Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman B, McLean P, Unni V (2011) Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein. J Neurosci 31:14508–14520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Agnaf OM, Jakes R, Curran MD, Middleton D, Ingenito R, Bianchi E, Pessi A, Neill D, Wallace A (1998) Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett 440(1–2):71–75

    Article  CAS  PubMed  Google Scholar 

  • Emamzadeh FN (2016) Alpha-synuclein structure, functions, and interactions. J Res Med Sci 21:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Emmanouilidou E, Stefanis L, Vekrellis K (2010) Cell-produced α-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol Aging 31:953–968

    Article  CAS  PubMed  Google Scholar 

  • George JM (2002) The synucleins. ​Genome Biol 3(1):REVIEWS3002

  • Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276(4):2380–2386

    Article  CAS  PubMed  Google Scholar 

  • Gruden MA, Davydova TV, Narkevich VB, Fomina VG, Wang C, Kudrin VS, Morozova-Roche LA, Sewell RD (2014) Intranasal administration of alpha-synuclein aggregates: a Parkinson’s disease model with behavioural and neurochemical correlates. Behav Brain Res 263:158–168

  • Herrera A, Muñoz P, Steinbusch HW, Segura-Aguilar J (2017) Are dopamine oxidation metabolites involved in the loss of dopaminergic neurons in the nigrostriatal system in Parkinson’s disease? ACS Chem Neurosci. doi:10.1021/ acschemneuro.7b00034

    PubMed  Google Scholar 

  • Huenchuguala S, Muñoz P, Zavala P, Villa M, Cuevas C, Ahumada U, Graumann R, Nore B, Couve E, Mannervik B et al (2014) Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingelsson M (2016) Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front Neurosci 10:408

    Article  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418, 291

  • Liu C, Corboy M, DeMartino G, Thomas P (2003) Endoproteolytic activity of the proteasome. Science 299:408–411

    Article  CAS  PubMed  Google Scholar 

  • Lozano J, MuÑoz P, Nore B, Ledoux S, Segura-Aguilar J (2010) Stable expression of short interfering RNA for DTdiaphorase induces neurotoxicity. Chem Res Toxicol 23:1492–1496

    Article  CAS  PubMed  Google Scholar 

  • Mak S, McCormack A, Manning-Bog A, Cuervo A, Di Monte D (2010) Lysosomal degradation of α-synuclein in vivo. J Biol Chem 285:13621–13629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, Games D, Schenk D (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46:857–868

    Article  CAS  PubMed  Google Scholar 

  • Muñoz P, Paris I, Sanders LH, Greenamyre JT, Segura-Aguilar J (2012) Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochim Biophys Acta 1822:1125–1136

    Article  PubMed  Google Scholar 

  • Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, Segura-Aguilar J (2015) DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci 145(1):37–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Nemani V, Wallender E, Kaehlcke K, Ott M, Edwards R (2008) Optical reporters for the conformation of α-synuclein reveal a specific interaction with mitochondria. J Neurosci 28:12305–12317

    Article  CAS  PubMed  Google Scholar 

  • Norris E, Giasson B, Hodara R, Xu S, Trojanowski J, Ischiropoulos H, Lee V (2005) Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–21219

    Article  CAS  PubMed  Google Scholar 

  • Ottolini D, Calí T, Szabò I, Brini M (2017) Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications. Biol Chem 398(1):77–100

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Lozano J, Cardenas S, Perez-Pastene C, Saud K, Fuentes P, Caviedes P, Dagnino-Subiabre A, RaismanVozari R, Shimahara T (2008) The catecholaminergic RCSN-3 cell line: a model to study dopamine metabolism. Neurotox Res 13:221–230

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Perez-Pastene C, Cardenas S, Iturriaga-Vasquez P, Muñoz P, Couve E, Caviedes P, Segura-Aguilar J (2010) Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotox Res 18:82–92

    Article  PubMed  Google Scholar 

  • Paris I, Muñoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121:376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrucci S, Ginevrino M, Valente EM (2016) Phenotypic spectrum of alpha-synuclein mutations: new insights from patients and cellular models. Parkinsonism Relat Disord 22(Suppl 1):S16–S20

    Article  PubMed  Google Scholar 

  • Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca F (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129:898–915

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Muñoz P, Paris I (2016) Aminochrome as new preclinical model to find new pharmacological treatment that stop the development of Parkinson’s disease. Curr Med Chem 23:346–359

    Article  CAS  PubMed  Google Scholar 

  • Spillantini M, Crowther R, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 95:6469–6473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulmer TS, Bax A (2005) Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. J Biol Chem 280(52):43179–43187

    Article  CAS  PubMed  Google Scholar 

  • Van Laar V, Mishizen A, Cascio M, Hastings T (2009) Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis 34:487–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volles M, And Lansbury P (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry 42:7871–7878

    Article  CAS  PubMed  Google Scholar 

  • Xilouri M, Brekk O, Stefanis L (2013) Alpha-synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol 47:537–551

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Stokes A, Roskoski R, Vrana K (1998) Dopamine in the presence of tyrosinase covalently modifies and inactivates tyrosinase hydroxylase. J Neurosci Res 54:691–697

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Dorado B, Figueroa H, Wang L, Planel E, Cookson M, Clark L, Duff K (2009) Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric α-synuclein. Am J Pathol 175:736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar KS, Siegel D, Ross D (2006) A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition. Mol Pharmacol 70:1079–1086

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by FONDECYT # 1100165. RCSN-3 cells are made available by P. Caviedes upon request (pcaviede@med.uchile.cl).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia S. Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, P.S., Segura-Aguilar, J. DT-diaphorase Protects Against Autophagy Induced by Aminochrome-Dependent Alpha-Synuclein Oligomers. Neurotox Res 32, 362–367 (2017). https://doi.org/10.1007/s12640-017-9747-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9747-4

Keywords

Navigation