Skip to main content

Advertisement

Log in

Characterization of the Kynurenine Pathway in CD8+ Human Primary Monocyte-Derived Dendritic Cells

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The kynurenine (KYN) pathway (KP) is a major degradative pathway of the amino acid, l-tryptophan (TRP), that ultimately leads to the anabolism of the essential pyridine nucleotide, nicotinamide adenine dinucleotide. TRP catabolism results in the production of several important metabolites, including the major immune tolerance-inducing metabolite KYN, and the neurotoxin and excitotoxin quinolinic acid. Dendritic cells (DCs) have been shown to mediate immunoregulatory roles that mediated by TRP catabolism. However, characterization of the KP in human DCs has so far only been partly delineated. It is critical to understand which KP enzymes are expressed and which KP metabolites are produced to be able to understand their regulatory effects on the immune response. In this study, we characterized the KP in human monocyte-derived DCs (MDDCs) in comparison with the human primary macrophages using RT-PCR, high-pressure gas chromatography, mass spectrometry, and immunocytochemistry. Our results show that the KP is entirely expressed in human MDDC. Following activation of the KP using interferon gamma, MDDCs can mediate apoptosis of T h cells in vitro. Understanding the molecular mechanisms regulating KP metabolism in MDDCs may provide renewed insight for the development of novel therapeutics aimed at modulating immunological effects and peripheral tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

QUIN:

Quinolinic acid

KP:

Kynurenine pathway

IDO:

Indoleamine 2,3-dioxygenase

TDO:

Tryptophan 2,3-dioxygenase

3-HAA:

3-Hydroxyanthranilic acid

3-HAO:

3-Hydroxyanthranilate dioxygenase

QPRTase:

Quinolinate phosphoribosyltransferase

KYN:

Kynurenine

KYNA:

Kynurenic acid

3-HK:

3-Hydroxykynurenine

PIC:

Picolinic acid

KYNase:

Kynurenase

KAT:

Kynurenine amino transferase

KMO:

Kynurenine e hydroxylase

GC–MS:

Gas chromatography–mass spectrometry

MDDC:

Monocyte-derived dendritic cells

MdM:

Blood monocyte-derived macrophages

ACMSDase:

Picolinic carboxylase

References

  • Belladonna ML, Grohmann U, Guidetti P, Volpi C, Bianchi R, Fioretti MC, Schwarcz R, Fallarino F, Puccetti P (2006) Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 177(1):130–137

    Article  CAS  PubMed  Google Scholar 

  • Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16(1):77–86

    Article  CAS  PubMed  Google Scholar 

  • Braidy N, Guillemin GJ, Grant R (2011) Effects of kynurenine pathway inhibition on NAD metabolism and cell viability in human primary astrocytes and neurons. Int J Tryptophan Res 4:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braidy N, Brew BJ, Inestrosa NC, Chung R, Sachdev P, Guillemin GJ (2014) Changes in Cathepsin D and Beclin-1 mRNA and protein expression by the excitotoxin quinolinic acid in human astrocytes and neurons. Metab Brain Dis 29(3):873–883

    Article  CAS  PubMed  Google Scholar 

  • Curatolo L, Caccia C, Speciale C, Raimondi L, Cini M, Marconi M, Molinari A, Schwarcz R (1996) Modulation of extracellular kynurenic acid content by excitatory amino acids in primary cultures of rat astrocytes. Adv Exp Med Biol 398:273–276

    Article  CAS  PubMed  Google Scholar 

  • Curzon G (1996) Brain tryptophan. Normal and disturbed control. Adv Exp Med Biol 398:27–34

    Article  CAS  PubMed  Google Scholar 

  • Espey MG, Chernyshev ON, Reinhard JJ, Namboodiri MA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8(2):431–434

    Article  CAS  PubMed  Google Scholar 

  • Fallarino F, Vacca C, Orabona C, Belladonna ML, Bianchi R, Marshall B, Keskin DB, Mellor AL, Fioretti MC, Grohmann U, Puccetti P (2002) Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int Immunol 14(1):65–68

    Article  CAS  PubMed  Google Scholar 

  • Foster AC, Vezzani A, French ED, Schwarcz R (1984) Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett 48(3):273–278

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka S, Ishiguro K, Yanagihara K, Tanabe A, Egashira Y, Sanada H, Shibata K (2002) Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan–niacin pathway and quinolinate hypothesis. J Biol Chem 277(38):35162–35167

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279(8):1356–1365

    Article  CAS  PubMed  Google Scholar 

  • Guillemin G, Boussin FD, Le Grand R, Croitoru J, Coffigny H, Dormont D (1996) Granulocyte macrophage colony stimulating factor stimulates in vitro proliferation of astrocytes derived from simian mature brains. Glia 16(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Guillemin G, Boussin FD, Croitoru J, Franck-Duchenne M, Le Grand R, Lazarini F, Dormont D (1997) Obtention and characterization of primary astrocyte and microglial cultures from adult monkey brains. J Neurosci Res 49(5):576–591

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ, Kerr SJ, Smythe GA, Armati PJ, Brew BJ (1999) Kynurenine pathway metabolism in human astrocytes. Adv Exp Med Biol 467:125–131

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ, Smith DG, Kerr SJ, Smythe GA, Kapoor V, Armati PJ, Brew BJ (2000) Characterisation of kynurenine pathway metabolism in human astrocytes and implications in neuropathogenesis. Redox Rep 5(2–3):108–111

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:1–13

    Article  Google Scholar 

  • Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003a) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ, Williams KR, Smith DG, Smythe GA, Croitoru-Lamoury J, Brew BJ (2003b) Quinolinic acid in the pathogenesis of Alzheimer’s disease. Adv Exp Med Biol 527:167–176

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM (2005a) Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol 31(4):395–404

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005b) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23

    Article  PubMed  Google Scholar 

  • Guillemin GJ, Wang L, Brew BJ (2005c) Quinolinic acid selectively induces apoptosis of human astrocytes: potential role in AIDS dementia complex. J Neuroinflamm 2(1):16

    Article  Google Scholar 

  • Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27(47):12884–92

    Article  CAS  PubMed  Google Scholar 

  • Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L (2005) Kynurenine metabolism in multiple sclerosis. Acta Neurol Scand 112(2):93–96

    Article  CAS  PubMed  Google Scholar 

  • Hertenstein A, Schumacher T, Litzenburger U, Opitz CA, Falk CS, Serafini T, Wick W, Platten M (2011) Suppression of human CD4+ T cell activation by 3,4-dimethoxycinnamonyl-anthranilic acid (tranilast) is mediated by CXCL9 and CXCL10. Biochem Pharmacol 82(6):632–641

    Article  CAS  PubMed  Google Scholar 

  • Heyes MP (1996) The kynurenine pathway and neurologic disease. Therapeutic strategies. Adv Exp Med Biol 398(125):125–129

    Article  CAS  PubMed  Google Scholar 

  • Heyes MP, Saito K, Markey SP (1992) Human macrophages convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 283:633–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyes MP, Chen CY, Major EO, Saito K (1997) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 326:351–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–7473

    CAS  PubMed  Google Scholar 

  • Hu J, Yuan X, Belladonna ML, Ong JM, Wachsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2006) Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res 66(17):8887–8896

    Article  CAS  PubMed  Google Scholar 

  • Jhamandas KH, Boegman RJ, Beninger RJ, Miranda AF, Lipic KA (2000) Excitotoxicity of quinolinic acid: modulation by endogenous antagonists. Neurotox Res 2(2–3):139–155

    Article  CAS  PubMed  Google Scholar 

  • Kapoor V, Kapoor R, Chalmers J (1994) Kynurenic acid, an endogenous glutamate antagonist, in SHR and WKY rats: possible role in central blood pressure regulation. Clin Exp Pharmacol Physiol 21(11):891–896

    Article  CAS  PubMed  Google Scholar 

  • Kerr SJ, Armati PJ, Pemberton LA, Smythe G, Brew BJ (1997a) Kynurenine pathway inhibition with 6-chloro-d-tryptophan reduces neurotoxicity of HIV-infected macrophage supernatants (abstract). Neurology 48(3):A94

    Google Scholar 

  • Kerr SJ, Armati PJ, Pemberton LA, Smythe G, Tattam B, Brew BJ (1997b) Kynurenine pathway inhibition reduces neurotoxicity of HIV-1-infected macrophages. Neurology 49(6):1671–1681

    Article  CAS  PubMed  Google Scholar 

  • Krause D, Suh HS, Tarassishin L, Cui QL, Durafourt BA, Choi N, Bauman A, Cosenza-Nashat M, Antel JP, Zhao ML, Lee SC (2011) The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation: role of hemeoxygenase-1. Am J Pathol 179(3):1360–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapin IP, Prakhie IB, Kiseleva IP (1982) Excitatory effects of kynurenine and its metabolites, amino acids and convulsants administered into brain ventricles: differences between rats and mice. J Neural Transm 54(3–4):229–238

    Article  CAS  PubMed  Google Scholar 

  • Li H, Shi B (2015) Tolerogenic dendritic cells and their applications in transplantation. Cell Mol Immunol 12(1):24–30

    Article  CAS  PubMed  Google Scholar 

  • Lim CK, Yap MM, Kent SJ, Gras G, Samah B, Batten JC, De Rose R, Heng B, Brew BJ, Guillemin GJ (2013) Characterization of the kynurenine pathway and quinolinic acid production in macaque macrophages. Int J Tryptophan Res 6:7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4(10):762–774

    Article  CAS  PubMed  Google Scholar 

  • Mellor AL, Baban B, Chandler P, Marshall B, Jhaver K, Hansen A, Koni PA, Iwashima M, Munn DH (2003) Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 171(4):1652–1655

    Article  CAS  PubMed  Google Scholar 

  • Mitsuno M, Kitajima Y, Ohtaka K, Kai K, Hashiguchi K, Nakamura J, Hiraki M, Noshiro H, Miyazaki K (2010) Tranilast strongly sensitizes pancreatic cancer cells to gemcitabine via decreasing protein expression of ribonucleotide reductase 1. Int J Oncol 36(2):341–349

    CAS  PubMed  Google Scholar 

  • Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81(4):247–265

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281(5380):1191–3

    Article  CAS  PubMed  Google Scholar 

  • Ohshio Y, Hanaoka J, Kontani K, Teramoto K (2014) Tranilast inhibits the function of cancer-associated fibroblasts responsible for the induction of immune suppressor cell types. Scand J Immunol 80(6):408–416

    Article  CAS  PubMed  Google Scholar 

  • Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F, Bianchi R, Velardi E, Perruccio K, Velardi A, Bronte V, Fioretti MC, Grohmann U (2006) Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood 107(7):2846–2854

    Article  CAS  PubMed  Google Scholar 

  • Pemberton LA, Kerr SJ, Smythe G, Brew BJ (1997) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interferon Cytokine Res 17(10):589–595

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Villella J, Wallace PK, Mhawech-Fauceglia P, Tario JD Jr, Andrews C, Matsuzaki J, Valmori D, Ayyoub M, Frederick PJ, Beck A, Liao J, Cheney R, Moysich K, Lele S, Shrikant P, Old LJ, Odunsi K (2009) Efficacy of levo-1-methyl tryptophan and dextro-1-methyl tryptophan in reversing indoleamine-2,3-dioxygenase-mediated arrest of T-cell proliferation in human epithelial ovarian cancer. Cancer Res 69(13):5498–5504

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ (2009) The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS One 4(7):e6344

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato S, Takahashi S, Asamoto M, Naiki T, Naiki-Ito A, Asai K, Shirai T (2010) Tranilast suppresses prostate cancer growth and osteoclast differentiation in vivo and in vitro. Prostate 70(3):229–238

    CAS  PubMed  Google Scholar 

  • Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219(4582):316–318

    Article  CAS  PubMed  Google Scholar 

  • Sheipouri D, Braidy N, Guillemin GJ (2012) Kynurenine pathway in skin cells: implications for UV-induced skin damage. Int J Tryptophan Res 5:15–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheipouri D, Grant R, Bustamante S, Lovejoy D, Guillemin GJ, Braidy N (2015) Characterisation of the kynurenine pathway in skin-derived fibroblasts and keratinocytes. J Cell Biochem 116(6):903–922

    Article  CAS  PubMed  Google Scholar 

  • Smythe GA, Braga O, Brew BJ, Grant RS, Guillemin GJ, Kerr SJ, Walker DW (2002) Concurrent quantification of quinolinic, picolinic, and nicotinic acids using electron-capture negative-ion gas chromatography–mass spectrometry. Anal Biochem 301(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Smythe GA, Poljak A, Bustamante S, Braga O, Maxwell A, Grant R, Sachdev P (2003) ECNI GC–MS analysis of picolinic and quinolinic acids and their amides in human plasma, CSF, and brain tissue. In: Allegri G, Costa CVL, Ragazzi E, Steinhart H, Varesio L (eds) Developments in tryptophan and serotonin metabolism, vol 527. Kluwer Academic/Plenum Publ., New York, pp 705–712

    Chapter  Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45(3):309–379

    CAS  PubMed  Google Scholar 

  • Subramaniam V, Chakrabarti R, Prud’homme GJ, Jothy S (2010) Tranilast inhibits cell proliferation and migration and promotes apoptosis in murine breast cancer. Anticancer Drugs 21(4):351–361

    Article  CAS  PubMed  Google Scholar 

  • Tanabe A, Egashira Y, Fukuoka S, Shibata K, Sanada H (2002) Expression of rat hepatic 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase is affected by a high protein diet and by streptozotocin-induced diabetes. J Nutr 132(6):1153–1159

    CAS  PubMed  Google Scholar 

  • Turville SG, Arthos J, Donald KM, Lynch G, Naif H, Clark G, Hart D, Cunningham AL (2001) HIV gp120 receptors on human dendritic cells. Blood 98(8):2482–2488

    Article  CAS  PubMed  Google Scholar 

  • Wirthgen E, Hoeflich A (2015) Endotoxin-induced tryptophan degradation along the kynurenine pathway: the role of indolamine 2,3-dioxygenase and aryl hydrocarbon receptor-mediated immunosuppressive effects in endotoxin tolerance and cancer and its implications for immunoparalysis. J Amino Acids 2015:973548

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The National Health and Medical Research Council (Fellowship and Program Grant), the NSW Health Department, the University of New South Wales, the Rebecca L. Cooper Medical Foundation and Private Donation from M. Terry Gammel have supported this work. NB is the recipient of an Alzheimer’s Australia Viertel Foundation Postdoctoral Research Fellowship and the NHMRC Early Career Researcher Postdoctoral Fellowship at the University of New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nady Braidy or Gilles J. Guillemin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braidy, N., Rossez, H., Lim, C.K. et al. Characterization of the Kynurenine Pathway in CD8+ Human Primary Monocyte-Derived Dendritic Cells. Neurotox Res 30, 620–632 (2016). https://doi.org/10.1007/s12640-016-9657-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9657-x

Keywords

Navigation