Skip to main content

Advertisement

Log in

Kynurenines, Gender and Neuroinflammation; Showcase Schizophrenia

  • Review
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Schizophrenia has a clear sexual dimorphism in age of onset and progression. The underlying mechanisms of this dimorphism are not known, but may be found in the interactions of sex hormones with the tryptophan catabolising kynurenine pathway. Schizophrenia is associated with general inflammation and disruption of glutamatergic and dopaminergic signalling. Metabolites of the kynurenine pathway have been shown to be immunomodulatory and have effects on glutamatergic and dopaminergic signalling. This review discusses the currently available literature on sex hormones and their effect on the kynurenine pathway in the context of the glutamatergic, dopaminergic and immunological features of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

3HAA:

3-hydroxy anthranilic acid

3HAO:

3-hydroxyanthranilate

3HK:

3-hydroxy kynurenine

ACMS:

Aminocarboxymuconate semialdehyde

ACMSD:

Aminocarboxymuconate semialdehyde decarboxylase

IDO1:

Indoleamine 2,3-dioxygenase

IFN-γ:

Interferon gamma

KAT:

Kynurenine aminotransferase

KMO:

Kynurenine monooxygenase

KP:

Kynurenine Pathway

KYN:

Kynurenine

KYNA:

Kynurenic acid

NMDAR:

N-methyl-D-aspartate receptor

PIC:

Picolinic acid

QPRT:

Quinolinate phosphoribosyltransferase

QUIN:

Quinolinic acid

TDO:

Tryptophan-2,3-dioxygenase

TRP:

Tryptophan

References

  • Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, Gorman JM, Laruelle M (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA. 97:8104–8109. doi:10.1073/pnas.97.14.8104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AE, Brautigam VM, Watters JJ (2004) Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor beta. Endocrinology 145:5021–5032. doi:10.1210/en.2004-0619

    Article  CAS  PubMed  Google Scholar 

  • Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, Bicciato S, Mazza EMC, Macchiarulo A, Vacca C, Iannitti R, Tissi L, Volpi C, Belladonna ML, Orabona C, Bianchi R, Lanz TV, Platten M, Della Fazia MA, Piobbico D, Zelante T, Funakoshi H, Nakamura T, Gilot D, Denison MS, Guillemin GJ, DuHadaway JB, Prendergast GC, Metz R, Geffard M, Boon L, Pirro M, Iorio A, Veyret B, Romani L, Grohmann U, Fallarino F, Puccetti P (2014) Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511:184–190. doi:10.1038/nature13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beumer W, Drexhage RC, De Wit H, Versnel MA, Drexhage HA, Cohen D (2012) Increased level of serum cytokines, chemokines and adipokines in patients with schizophrenia is associated with disease and metabolic syndrome. Psychoneuroendocrinology 37:1901–1911. doi:10.1016/j.psyneuen.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Braidman IP, Rose DP (1971) Effects of sex hormones on three glucocorticoid-inducible enzymes concerned with amino acid metabolism in rat liver. Endocrinology 89:1250–1255

    Article  CAS  PubMed  Google Scholar 

  • Brann DW, Dhandapani K, Wakade C, Mahesh VB, Khan MM (2007) Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72:381–405. doi:10.1016/j.steroids.2007.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cepeda C, André V.M, Jocoy E.L, Levine M.S, (2009). NMDA and Dopamine: Diverse mechanisms applied to interacting receptor systems, in: Biology of the NMDA Receptor. pp. 1–13. doi:NBK5280 [bookaccession]

  • Chauvel V, Vamos E, Pardutz A, Vecsei L, Schoenen J, Multon S (2012) Effect of systemic kynurenine on cortical spreading depression and its modulation by sex hormones in rat. Exp Neurol 236:207–214. doi:10.1016/j.expneurol.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Guillemin GJ (2009) Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res. 2:1–19

    PubMed  PubMed Central  Google Scholar 

  • Connell BJ, Crosby KM, Richard MJP, Mayne MB, Saleh TM (2007) Estrogen-mediated neuroprotection in the cortex may require NMDA receptor activation. Neuroscience 146:160–169. doi:10.1016/j.neuroscience.2007.01.014

    Article  CAS  PubMed  Google Scholar 

  • Cuffy MC, Silverio AM, Qin L, Wang Y, Eid R, Brandacher G, Lakkis FG, Fuchs D, Pober JS, Tellides G (2007) Induction of indoleamine 2,3-dioxygenase in vascular smooth muscle cells by interferon-gamma contributes to medial immunoprivilege. J Immunol 179(8):5246–5254. http://www.ncbi.nlm.nih.gov/pubmed/17911610. Accessed 22 Dec 2013

  • Dantzer R (2004) Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 500:399–411. doi:10.1016/j.ejphar.2004.07.040

    Article  CAS  PubMed  Google Scholar 

  • Dewick PM (2001) Medicinal natural products, 2nd edn. Wiley, Chichester. doi:10.1002/0470846275

    Book  Google Scholar 

  • Dhandapani KM, Wade FM, Mahesh VB, Brann DW (2005) Astrocyte-derived transforming growth factor-{beta} mediates the neuroprotective effects of 17{beta}-estradiol: involvement of nonclassical genomic signaling pathways. Endocrinology 146(6):2749–2759. doi:10.1210/en.2005-0014

    Article  CAS  PubMed  Google Scholar 

  • El-Zoghby SM, El-Sewedy SM, Saad AA, Mostafa MH, Ebied SM, Abdel-Tawab GA (1976) In vitro trials to counteract the inhibitory effect of beta-oestradiol and ethynyloestradiol on the B6-dependent kynurenine aminotransferase enzyme. Biochem Pharmacol 25:2411–2413. doi:10.1016/0006-2952(76)90040-X

    Article  CAS  PubMed  Google Scholar 

  • Erhardt S, Blennow K, Nordin C, Skogh E, Lindström LH, Engberg G (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313:96–98

    Article  CAS  PubMed  Google Scholar 

  • Erhardt S, Schwieler L, Engberg G (2003) Kynurenic acid and schizophrenia. Adv Exp Med Biol 527:155–165

    Article  CAS  PubMed  Google Scholar 

  • Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18:206–214. doi:10.1038/mp.2012.110

    Article  CAS  PubMed  Google Scholar 

  • Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Kwek P, Chavez C, van den Buuse M (2010) Estrogen treatment blocks 8-hydroxy-2-dipropylaminotetralin- and apomorphine-induced disruptions of prepulse inhibition: involvement of dopamine D1 or D2 or serotonin 5-HT1A, 5-HT2A, or 5-HT7 receptors. J Pharmacol Exp Ther 333:218–227. doi:10.1124/jpet.109.162123

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Kwek P, van den Buuse M (2012) The role of estrogen and testosterone in female rats in behavioral models of relevance to schizophrenia. Psychopharmacology 219:213–224. doi:10.1007/s00213-011-2389-y

    Article  CAS  PubMed  Google Scholar 

  • Gogtay N, Vyas NS, Testa R, Wood SJ, Pantelis C (2011) Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull 37:504–513. doi:10.1093/schbul/sbr030

    Article  PubMed  PubMed Central  Google Scholar 

  • Gos T, Myint A-M, Schiltz K, Meyer-Lotz G, Dobrowolny H, Busse S, Müller UJ, Mawrin C, Bernstein HG, Bogerts B, Steiner J (2014) Reduced microglial immunoreactivity for endogenous NMDA receptor agonist quinolinic acid in the hippocampus of schizophrenia patients. Brain Behav Immun. doi:10.1016/j.bbi.2014.05.012

    PubMed  Google Scholar 

  • Grant RS, Coggan SE, Smythe GA (2009) The physiological action of picolinic acid in the human brain. Int J Tryptophan Res. 2:71–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279:1356–1365. doi:10.1111/j.1742-4658.2012.08485.x

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:842–853

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49:15–23. doi:10.1002/glia.20090

    Article  PubMed  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    CAS  PubMed  Google Scholar 

  • Holtze M, Saetre P, Erhardt S, Schwieler L, Werge T, Hansen T, Nielsen J, Djurovic S, Melle I, Andreassen OA, Hall H, Terenius L, Agartz I, Engberg G, Jönsson EG, Schalling M (2011) Kynurenine 3-monooxygenase (KMO) polymorphisms in schizophrenia: an association study. Schizophr Res 127:270–272. doi:10.1016/j.schres.2010.10.002

    Article  PubMed  Google Scholar 

  • Huang Y, Huang YL, Zhang S, Zhu YC, Yao T (2004) Estradiol acutely attenuates glutamate-induced calcium overload in primarily cultured rat hippocampal neurons through a membrane receptor-dependent mechanism. Brain Res 1026:254–260. doi:10.1016/j.brainres.2004.08.038

    Article  CAS  PubMed  Google Scholar 

  • Huckle PL, Palia SS (1993) Managing resistant schizophrenia. Br J Hosp Med 50:467–471

    CAS  PubMed  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Asnis GM, Wetzler S, Kay SR, van Praag HM (1991) The role of serotonin in schizophrenia. New findings Schizophr Res. 5:181–182

    Article  CAS  PubMed  Google Scholar 

  • Kahlfuß S, Simma N, Mankiewicz J, Bose T, Lowinus T, Klein-Hessling S, Sprengel R, Schraven B, Heine M, Bommhardt U (2014) Immunosuppression by N-methyl-D-aspartate receptor antagonists is mediated through inhibition of Kv1.3 and KCa3.1 channels in T cells. Mol Cell Biol 34:820–831. doi:10.1128/MCB.01273-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapoor R, Lim KS, Cheng A, Garrick T, Kapoor V (2006) Preliminary evidence for a link between schizophrenia and NMDA-glycine site receptor ligand metabolic enzymes, d-amino acid oxidase (DAAO) and kynurenine aminotransferase-1 (KAT-1). Brain Res 1106:205–210. doi:10.1016/j.brainres.2006.05.082

    Article  CAS  PubMed  Google Scholar 

  • Kegel ME, Bhat M, Skogh E, Samuelsson M, Lundberg K, Dahl M, Sellgren C, Schwieler L, Engberg G, Schuppe-Koistinen I, Erhardt S (2014) Imbalanced kynurenine pathway in schizophrenia. Int J Tryptophan Res. 7:15–22. doi:10.4137/IJTR.S16800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp JA, Foster AC, Wong EHF (1987) Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci 10:294–298. doi:10.1016/0166-2236(87)90176-7

    Article  CAS  Google Scholar 

  • Kiank C, Zeden JP, Drude S, Domanska G, Fusch G, Otten W, Schuett C (2010) Psychological stress-induced, IDO1-dependent tryptophan catabolism: implications on immunosuppression in mice and humans. PLoS ONE 5:1–12. doi:10.1371/journal.pone.0011825

    Article  Google Scholar 

  • Knox WE (1951) Two mechanisms which increase in vivo the liver tryptophan peroxidase activity: specific enzyme adaptation and stimulation of the pituitary adrenal system. Br J Exp Pathol. 32:462–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni J, Riedel A, De Castella A (2001) Estrogen—a potential treatment for schizophrenia. Schizophr res. 48:137–144

    Article  CAS  PubMed  Google Scholar 

  • Lekiem JE, Brown RR, Rose DP (1975) Vitamin B6 requirements of women using oral contraceptives. The Am j of clinic nutr. 28:535–541

    Google Scholar 

  • Liu L, Wang Z (2013) Estrogen attenuates lipopolysaccharide-induced nitric oxide production in macrophages partially via the nongenomic pathway. Cell Immunol 286:53–58. doi:10.1016/j.cellimm.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  • Locklear MN, Cohen AB, Jone a, Kritzer MF (2014) Sex differences distinguish intracortical glutamate receptor-mediated regulation of extracellular dopamine levels in the prefrontal cortex of adult rats. Cortex, Cereb. doi:10.1093/cercor/bhu222

    Google Scholar 

  • Martin LF, Freedman R (2007) Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol 78:225–246. doi:10.1016/S0074-7742(06)78008-4

    Article  CAS  PubMed  Google Scholar 

  • McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, Perkins DO, Dickel DE, Kusenda M, Krastoshevsky O, Krause V, Kumar RA, Grozeva D, Malhotra D, Walsh T, Zackai EH, Kaplan P, Ganesh J, Krantz ID, Spinner NB, Roccanova P, Bhandari A, Pavon K, Lakshmi B, Leotta A, Kendall J, Lee Y-H, Vacic V, Gary S, Iakoucheva LM, Crow TJ, Christian SL, Lieberman JA, Stroup TS, Lehtimäki T, Puura K, Haldeman-Englert C, Pearl J, Goodell M, Willour VL, Derosse P, Steele J, Kassem L, Wolff J, Chitkara N, McMahon FJ, Malhotra AK, Potash JB, Schulze TG, Nöthen MM, Cichon S, Rietschel M, Leibenluft E, Lajonchere CM, Sutcliffe JS, Skuse D, Gill M, Gallagher L, Mendell NR, Craddock N, Owen MJ, O’Donovan MC, Shaikh TH, Susser E, Delisi LE, Sullivan PF, Deutsch CK, Rapoport J, Levy DL, King M-C, Sebat J (2009) Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 41:1223–1227. doi:10.1038/ng.474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moursi GE, Abdel-Daim MH, Kelada NL, Abdel-Tawab GA, Girgis LH (1970) The influence of sex, age, synthetic oestrogens, progestogens and oral contraceptives on the excretion of urinary tryptophan metabolites. Bull World Health Organ 43:651–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller N, Myint A-M, Schwarz MJ, Muller N, Myint AMJ, Schwarz M (2011) Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects. Curr Pharm Des 17:130–136. doi:10.2174/138161211795049552

    Article  PubMed  Google Scholar 

  • Myint AM, Schwarz MJ, Verkerk R, Mueller HH, Zach J, Scharpé S, Steinbusch HWM, Leonard BE, Kim YK (2011) Reversal of imbalance between kynurenic acid and 3-hydroxykynurenine by antipsychotics in medication-naïve and medication-free schizophrenic patients. Brain Behav Immun 25:1576–1581. doi:10.1016/j.bbi.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  • Nilsen J, Chen S, Brinton RD (2002) Dual action of estrogen on glutamate-induced calcium signaling: mechanisms requiring interaction between estrogen receptors and src/mitogen activated protein kinase pathway. Brain Res 930:216–234

    Article  CAS  PubMed  Google Scholar 

  • Notarangelo FM, Wilson EH, Horning KJ, Wilson EH, Thomas MaR, Harris TH, Fang Q, Hunter CA, Schwarcz R (2013). Evaluation of kynurenine pathway metabolism in Toxoplasma gondii-infected mice: Implications for schizophrenia. Schizophr Res. doi:10.1016/j.schres.2013.11.011

    PubMed  PubMed Central  Google Scholar 

  • Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203. doi:10.1038/nature10491

    Article  CAS  PubMed  Google Scholar 

  • Ormstad H, Verkerk R, Aass HCD, Amthor KF, Sandvik L (2013) Inflammation-induced catabolism of tryptophan and tyrosine in acute ischemic stroke. J Mol Neurosci. doi:10.1007/s12031-013-0097-2

    PubMed  Google Scholar 

  • Pemberton LA, Kerr SJ, Smythe G, Brew BJ (1997) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interferon Cytokine Res 17:589–595

    Article  CAS  PubMed  Google Scholar 

  • Picchioni MM, Murray RM (2007) Schizophr BMJ 335:91–95. doi:10.1136/bmj.39227.616447.BE

    Google Scholar 

  • Pilowsky LS, Bressan RA, Stone JM, Erlandsson K, Mulligan RS, Krystal JH, Ell PJ (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11:118–119. doi:10.1038/sj.mp.4001751

    Article  CAS  PubMed  Google Scholar 

  • Prange-Kiel J, Wehrenberg U, Jarry H, Rune GM (2003) Para/autocrine regulation of estrogen receptors in hippocampal neurons. Hippocampus 13:226–234. doi:10.1002/hipo.10075

    Article  CAS  PubMed  Google Scholar 

  • Prendergast G, Metz R, Muller AJ, Merlo LMF, Mandik-nayak L (2014) IDO2 in immunomodulation and autoimmunity. Immunol, Front. doi:10.3389/fimmu.2014.00585

    Google Scholar 

  • Pulver AE, Brown CH, Wolyniec P, McGrath J, Tam D, Adler L, Carpenter WT, Childs B (1990) Schizophrenia: age at onset, gender and familial risk. Acta Psychiatr Scand 82:344–351

    Article  CAS  PubMed  Google Scholar 

  • Riecher-Rössler A, Häfner H (2000) Gender aspects in schizophrenia: bridging the border between social and biological psychiatry. Acta Psychiatr Scand Suppl 102:58–62

    Article  Google Scholar 

  • Riecher-Rössler A, Häfner H, Stumbaum M, Maurer K, Schmidt R (1994) Can estradiol modulate schizophrenic symptomatology? Schizophr Bull 20:203–214

    Article  PubMed  Google Scholar 

  • Rose DP (1972) Aspects of tryptophan metabolism in health and disease: a review. J Clin Pathol 25:17–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter M, Pogson CI (1985) The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes. Biochem J 229:499–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandberg A, Rosethal H, Slaunwhite W Jr (1969) Certain metabolic effects of estrogens. Metabolic effects of gonadal hormones and contraceptive steroids. Plenum Press, New York, pp 367–378

    Chapter  Google Scholar 

  • Sathyasaikumar KV, Stachowski EK, Wonodi I, Roberts RC, Rassoulpour A, McMahon RP, Schwarcz R (2011) Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr Bull 37:1147–1156. doi:10.1093/schbul/sbq112

    Article  PubMed  Google Scholar 

  • Schröcksnadel K, Widner B, Bergant A, Neurauter G, Schennach H, Schröcksnadel H, Fuchs D (2003) Longitudinal study of tryptophan degradation during and after pregnancy. Life Sci 72:785–793

    Article  PubMed  Google Scholar 

  • Stevens JR (1982) The neuropathology of schizophrenia. Psychol Med 12:695–700

    Article  CAS  PubMed  Google Scholar 

  • van OS J, Kapur S (2009) Schizophr Lancet 374:635–645. doi:10.1016/S0140-6736(09)60995-8

    Article  Google Scholar 

  • Vécsei L, Miller J, MacGarvey U, Flint Beal M (1992) Kynurenine and probenecid inhibit pentylenetetrazol- and NMDLA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res Bull 28:233–238. doi:10.1016/0361-9230(92)90184-Y

    Article  PubMed  Google Scholar 

  • Weaver CE, Park-Chung M, Gibbs TT, Farb DH (1997) 17beta-Estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors. Brain Res 761:338–341

    Article  CAS  PubMed  Google Scholar 

  • Wolf H, Walter S, Brown RR, Arend RA (1980) Effect of natural oestrogens on tryptophan metabolism: evidence for interference of oestrogens with kynureninase. Scand J Clin Lab Invest 40:15–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. James Hutson for his assistance with Fig. 4. Ms Josien de Bie is supported by an international scholarship from Macquarie University. Prof Guillemin is supported by the National Health and Medical Research Council (NHMRC) and the Australian Research Council (ARC). Prof Guillemin is also a recipient of the Australian Research Council Future Fellowship Award (FT120100397). Dr Lim is a recipient of the Society of Mental Health Research (SMHR) Australia Early Career Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Guillemin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Bie, J., Lim, C.K. & Guillemin, G.J. Kynurenines, Gender and Neuroinflammation; Showcase Schizophrenia. Neurotox Res 30, 285–294 (2016). https://doi.org/10.1007/s12640-016-9641-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9641-5

Keywords

Navigation