Skip to main content
Log in

Combined Effects of Simultaneous Exposure to Caffeine and Cocaine in the Mouse Striatum

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Caffeine is the world’s most popular psychoactive drug and is also an active adulterant found in many drugs of abuse, including seized cocaine samples. Despite several studies which examine the effects of caffeine or cocaine administered as single agents, little data are available for these agents when given in combination. The purpose of the present study was to determine if combined intake of both psychostimulants can lead to maladaptive changes in striatal function. Mice were injected with a binge regimen (intermittent treatment for 13 days) of caffeine (3 × 5 mg/kg), cocaine (3 × 10 mg/kg), or combined administration. We found that chronic caffeine potentiated locomotion induced by cocaine and that both caffeine-treated groups showed sensitization. Striatal tissue was obtained 24 h and 7 days after last injection (withdrawal) for immunohistochemistry and mRNA expression. Our results show that combined intake of both psychostimulants can increase GFAP immunoreactivity in the striatum at both times post treatment. Gene expression analysis, targeted at dopamine, adenosine, and glutamate receptor subunit genes, revealed significant transcript down-regulation in the dorsal striatum of AMPA, NMDA, D1 and D2 receptor subunit mRNA expression in the group that received combined treatment, but not after individual administration. At withdrawal, we found increased D1 receptor mRNA expression along with increased A1, AMPA, NMDA, and metabotropic subunit expression. A2A mRNA showed decreased expression after both times in all experimental groups. Our study provides evidence that there are striatal alterations mediated by combined caffeine and cocaine administration, and highlights negative outcomes of chronic intake of both psychostimulants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739. doi:10.1016/j.neuron.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bignami A, Eng LF, Dahl D, Uyeda CT (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43:429–435

    Article  CAS  PubMed  Google Scholar 

  • Bisagno V, Raineri M, Peskin V, Wikinski SI, Uchitel OD, Llinás RR, Urbano FJ (2010) Effects of T-type calcium channel blockers on cocaine-induced hyperlocomotion and thalamocortical GABAergic abnormalities in mice. Psychopharmacology 212:205–214. doi:10.1007/s00213-010-1947-z

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Calvo E, Rivera P, Arrabal S, Vargas A, Pavón FJ, Serrano A, Castilla-Ortega E, Galeano P, Rubio L, Suárez J, Rodriguez de Fonseca F (2014) Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat. Front Integr Neurosci 8(7):106. doi:10.3389/fnint.2013.00106

    Google Scholar 

  • Bowers MS, Kalivas PW (2003) Forebrain astroglial plasticity is induced following withdrawal from repeated cocaine administration. Eur J Neurosci 17:1273–1278

    Article  PubMed  Google Scholar 

  • Brown AL, Flynn JR, Smith DW, Dayas CV (2011) Down-regulated striatal gene expression for synaptic plasticity-associated proteins in addiction and relapse vulnerable animals. Int J Neuropsychopharmacol 14:1099–1110. doi:10.1017/S1461145710001367

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Bisagno V (2014) Glial-neuronal ensembles: partners in drug addiction-associated synaptic plasticity. Front Pharmacol 2(5):204. doi:10.3389/fphar.2014.00204

    Google Scholar 

  • Cadet JL, Bisagno V (2016) Neuropsychological consequences of chronic drug use: relevance to treatment approaches. Front Psychiatry. doi:10.3389/fpsyt.2015.00189

    PubMed  PubMed Central  Google Scholar 

  • Cadet JL, Bisagno V, Milroy CM (2014) Neuropathology of substance use disorders. Acta Neuropathol 127:91–107. doi:10.1007/s00401-013-1221-7

    Article  CAS  PubMed  Google Scholar 

  • Cauli O, Pinna A, Valentini V, Morelli M (2003) Subchronic caffeine exposure induces sensitization to caffeine and cross-sensitization to amphetamine ipsilateral turning behavior independent from dopamine release. Neuropsychopharmacology 28:1752–1759

    Article  CAS  PubMed  Google Scholar 

  • Centonze D, Grande C, Usiello A, Gubellini P, Erbs E, Martin AB, Pisani A, Tognazzi N, Bernardi G, Moratalla R, Borrelli E, Calabresi P (2003) Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J Neurosci 23:6245–6254

    CAS  PubMed  Google Scholar 

  • Cole C, Jones L, McVeigh J, Kicman A, Syed Q, Bellis M (2011) Adulterants in illicit drugs: a review of empirical evidence. Drug Test Anal 3:89–96. doi:10.1002/dta.220

    Article  CAS  PubMed  Google Scholar 

  • Collins GT, France CP (2015) Determinants of conditioned reinforcing effectiveness: dopamine D2-like receptor agonist-stimulated responding for cocaine-associated stimuli. Eur J Pharmacol 769:242–249. doi:10.1016/j.ejphar.2015.11.024

    Article  CAS  PubMed  Google Scholar 

  • Derlet RW, Tseng JC, Albertson TE (1992) Potentiation of cocaine and d-amphetamine toxicity with caffeine. Am J Emerg Med 10:211–216

    Article  CAS  PubMed  Google Scholar 

  • Dews PB, O’Brien CP, Bergman J (2002) Caffeine: behavioral effects of withdrawal and related issues. Food ChemToxicol 40:1257–1261

    Article  CAS  Google Scholar 

  • Dietrich JB, Mangeol A, Revel MO, Burgun C, Aunis D, Zwiller J (2005) Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. Neuropharmacology 48:965–974

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  CAS  PubMed  Google Scholar 

  • Eisener-Dorman AF, Grabowski-Boase L, Tarantino LM (2011) Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice. Behav Brain Funct 1(7):29. doi:10.1186/1744-9081-7-29

    Article  Google Scholar 

  • El Yacoubi M, Ledent C, Ménard JF, Parmentier M, Costentin J, Vaugeois JM (2000) The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A(2A) receptors. Br J Pharmacol 129:1465–1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res 25:1439–1451

    Article  CAS  PubMed  Google Scholar 

  • Ferré S (2013) Caffeine and substance use disorders. J Caffeine Res 3:57–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferré S, Lluís C, Justinova Z, Quiroz C, Orru M, Navarro G, Canela EI, Franco R, Goldberg SR (2010) Adenosine-cannabinoid receptor interactions. Implications for striatal function. Br J Pharmacol 160:443–453. doi:10.1111/j.1476-5381.2010.00723.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Filip M, Frankowska M, Zaniewska M, Przegaliński E, Muller CE, Agnati L, Franco R, Roberts DC, Fuxe K (2006) Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res 1077:67–80

    Article  CAS  PubMed  Google Scholar 

  • Fisone G, Håkansson K, Borgkvist A, Santini E (2007) Signaling in the basal ganglia: postsynaptic and presynaptic mechanisms. Physiol Behav 92:8–14

    Article  CAS  PubMed  Google Scholar 

  • Frau L, Costa G, Porceddu PF, Khairnar A, Castelli MP, Ennas MG, Madeddu C, Wardas J, Morelli M (2015) Influence of caffeine on3,4-methylenedioxymethamphetamine-induced dopaminergic neuron degeneration and neuroinflammation is age-dependent. J Neurochem. doi:10.1111/jnc.13377

    PubMed  Google Scholar 

  • Fredholm BB (1995) Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol 76:93–101

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  • Freeman WM, Lull ME, Patel KM, Brucklacher RM, Morgan D, Roberts DC, Vrana KE (2010) Gene expression changes in the medial prefrontal cortex and nucleus accumbens following abstinence from cocaine self-administration. BMC Neurosci 11:29. doi:10.1186/1471-2202-11-29

    Article  PubMed  PubMed Central  Google Scholar 

  • Garaschuk O, Yaari Y, Konnerth A (1997) Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol (Lond) 502(Pt 1):13–30

    Article  CAS  Google Scholar 

  • Gasior M, Jaszyna M, Peters J, Goldberg SR (2000) Changes in the ambulatory activity and discriminative stimulus effects of psychostimulant drugs in rats chronically exposed to caffeine: effect of caffeine dose. J Pharmacol Exp Ther 295:1101–1111

    CAS  PubMed  Google Scholar 

  • Gonzalez CR, Gonzalez B, Matzkin ME, Muñiz JA, Cadet JL, Garcia-Rill E, Urbano FJ, Vitullo AD, Bisagno V (2015) Psychostimulant-induced testicular toxicity in mice: evidence of cocaine and caffeine effects on the local dopaminergic system. PLoS One 10(11):e0142713. doi:10.1371/journal.pone.0142713

    Article  PubMed  PubMed Central  Google Scholar 

  • Haile CN, During MJ, Jatlow PI, Kosten TR, Kosten TA (2003) Disulfiram facilitates the development and expression of locomotor sensitization to cocaine in rats. Biol Psychiatry 54:915–921

    Article  CAS  PubMed  Google Scholar 

  • Hasin DS, O’Brien CP, Auriacombe M, Borges G, Bucholz K, Budney A, Compton WM, Crowley T, Ling W, Petry NM, Schuckit M, Grant BF (2013) DSM-5 criteria for substance use disorders: recommendations and rationale. Am J Psychiatry 170:834–851. doi:10.1176/appi.ajp.2013.12060782

    Article  PubMed  PubMed Central  Google Scholar 

  • Hays LR, Farabee D, Miller W (1998) Caffeine and nicotine use in an addicted population. J Addict Dis 17:47–54

    Article  CAS  PubMed  Google Scholar 

  • Hsu CW, Chen CY, Wang CS, Chiu TH (2009) Caffeine and a selective adenosine A2A receptor antagonist induce reward and sensitization behavior associated with increased phospho-Thr75-DARPP-32 in mice. Psychopharmacology (Berl) 204:313–325. doi:10.1007/s00213-009-1461-3

    Article  CAS  Google Scholar 

  • Jayanthi S, Deng X, Bordelon M, McCoy MT, Cadet JL (2001) Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB J 15:1745–1752

    Article  CAS  PubMed  Google Scholar 

  • Jones HE, Griffiths RR (2003) Oral caffeine maintenance potentiates the reinforcing and stimulant subjective effects of intravenous nicotine in cigarette smokers. Psychopharmacology 165:280–290

    CAS  PubMed  Google Scholar 

  • Kalivas PW, O’Brien C (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33(1):166–180

    Article  CAS  PubMed  Google Scholar 

  • Khairnar A, PlumitalloA Frau L, Schintu N, Morelli M (2010) Caffeine enhances astroglia and microglia reactivity induced by 3,4-methylenedioxymethamphetamine (‘ecstasy’) in mouse brain. Neurotox Res 17:435–439. doi:10.1007/s12640-009-9125-y

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin A, Johansson B, Zvartau EE, Fredholm BB (1999) Caffeine, acting on adenosine A(1) receptors, prevents the extinction of cocaine-seeking behavior in mice. J PharmacolExpTher. 290:535–542

    CAS  Google Scholar 

  • Kuzmin A, Johansson B, Fredholm BB, Ögren SO (2000a) Genetic evidence that cocaine and caffeine stimulate locomotion in mice via different mechanisms. Life sciences 66(8):PL113–PL118

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin A, Johansson B, Semenova S, Fredholm BB (2000b) Differences in the effect of chronic and acute caffeine on self-administration of cocaine in mice. Eur J Neurosci 12:3026–3032

    Article  CAS  PubMed  Google Scholar 

  • Liguori A, Hughes JR, Goldberg K, Callas P (1997) Subjective effects of oral caffeine in formerly cocaine-dependent humans. Drug Alcohol Depend 49:17–24

    Article  CAS  PubMed  Google Scholar 

  • López-Hill X, Prieto JP, Meikle MN, Urbanavicius J, Abin-Carriquiry JA, Prunell G, Umpiérrez E, Scorza MC (2011) Coca-paste seized samples characterization: chemical analysis, stimulating effect in rats and relevance of caffeine as a major adulterant. Behav Brain Res 221:134–141. doi:10.1016/j.bbr.2011.03.005

    Article  PubMed  Google Scholar 

  • Maragakis NJ, Rothstein JD (2006) Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat ClinPractNeurol 2:679–689

    CAS  Google Scholar 

  • Matos M, Augusto E, Santos-Rodrigues AD, Schwarzschild MA, Chen JF, Cunha RA, Agostinho P (2012) Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 60:702–716. doi:10.1002/glia.22290

    Article  PubMed  Google Scholar 

  • McNamara R, Kerans A, O’Neill B, Harkin A (2006) Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA (“Ecstasy”) and MDA (“Love”). Neuropharmacology 50:69–80

    Article  CAS  PubMed  Google Scholar 

  • McPherson PS, Kim YK, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronado R, Campbell KP (1991) The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 7:17–25

    Article  CAS  PubMed  Google Scholar 

  • Prieto JP, Galvalisi M, López-Hill X, Meikle MN, Abin-Carriquiry JA, Scorza C (2015) Caffeine enhances and accelerates the expression of sensitization induced by coca paste indicating its relevance as a main adulterant. Am J Addict 24:475–481

    Article  PubMed  Google Scholar 

  • Raineri M, Gonzalez B, Goitia B, Garcia-Rill E, Krasnova IN, Cadet JL, Urbano FJ, Bisagno V (2012) Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum. PLoS One 7:e46599. doi:10.1371/journal.pone.0046599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reissig CJ, Strain EC, Griffiths RR (2009) Caffeinated energy drinks–a growing problem. Drug Alcohol Depend 99:1–10. doi:10.1016/j.drugalcdep.2008.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    Article  CAS  PubMed  Google Scholar 

  • Rosi S, McGann K, Hauss-Wegrzyniak B, Wenk GL (2003) The influence of brain inflammation upon neuronal adenosine A2B receptors. J Neurochem 86:220–227

    Article  CAS  PubMed  Google Scholar 

  • Rosin DL, Hettinger BD, Lee A, Linden J (2003) Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology 61(11 Suppl 6):S12–S18

    Article  CAS  PubMed  Google Scholar 

  • Schenk S, Partridge B (1997) Sensitization and tolerance in psychostimulant self-administration. Pharmacol Biochem Behav 57:543–550

    Article  CAS  PubMed  Google Scholar 

  • Schenk S, Valadez A, Horger BA, Snow S, Wellman PJ (1994) Interactions between caffeine and cocaine in tests of self-administration. Behav Pharmacol 5:153–158

    Article  CAS  PubMed  Google Scholar 

  • Sinchai T, Plasen S, Sanvarinda Y, Jaisin Y, Govitrapong P, Morales NP, Ratanachamnong P, Plasen D (2011) Caffeine potentiates methamphetamine-induced toxicity both in vitro and in vivo. Neurosci Lett 502:65–69. doi:10.1016/j.neulet.2011.07.026

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. doi:10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stonehouse AH, Adachi M, Walcott EC, Jones FS (2003) Caffeine regulates neuronal expression of the dopamine 2 receptor gene. Mol Pharmacol 64:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Tozzi A, de Iure A, Marsili V, Romano R, Tantucci M, Di Filippo M, Costa C, Napolitano F, Mercuri NB, Borsini F, Giampà C, Fusco FR, Picconi B, Usiello A, Calabresi P (2012) A2A adenosine receptor antagonism enhances synaptic and motor effects of cocaine via CB1 cannabinoid receptor activation. PLoS One 7(6):e38312. doi:10.1371/journal.pone.0038312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ujike H, Akiyama K, Otsuki S (1990) D-2 but not D-1 dopamine agonists produce augmented behavioral response in rats after subchronic treatment with methamphetamine or cocaine. Psychopharmacology 102:459–464

    Article  CAS  PubMed  Google Scholar 

  • Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Hervé D, Girault JA (2010) Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology 35:401–415. doi:10.1038/npp.2009.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanattou-Saïfoudine N, McNamara R, Harkin A (2012) Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) and related psychostimulants: mechanisms and mediators. Br J Pharmacol 167:946–959. doi:10.1111/j.1476-5381.2012.02065.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 151:99–120

    Article  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Tomasi D (2012) Addiction circuitry in the human brain. Annu Rev PharmacolToxicol 52:321–336. doi:10.1146/annurev-pharmtox-010611-134625

    Article  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Logan J, Alexoff D, Fowler JS, Thanos PK, Wong C, Casado V, Ferre S, Tomasi D (2015) Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl Psychiatry v 5:e549. doi:10.1038/tp.2015.46

    Article  CAS  Google Scholar 

  • Vollstädt-Klein S, Wichert S, Rabinstein J, Bühler M, Klein O, Ende G, Hermann D, Mann K (2010) Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction 105:1741–1749. doi:10.1111/j.1360-0443.2010.03022.x

    Article  PubMed  Google Scholar 

  • Wang N, Su P, Zhang Y, Lu J, Xing B, Kang K, Li W, Wang Y (2014) Protein kinase D1-dependent phosphorylation of dopamine D1 receptor regulates cocaine-induced behavioral responses. Neuropsychopharmacology 39:1290–1301. doi:10.1038/npp.2013.341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worley CM, Valadez A, Schenk S (1994) Reinstatement of extinguished cocaine-taking behavior by cocaine and caffeine. Pharmacol Biochem Behav 48:217–221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Bisagno has been authorized to study drug abuse substances in animal models by A.N.M.A.T. (National Board of Medicine Food and Medical Technology, Ministerio de Salud, Argentina). This work was supported by FONCYT-Agencia Nacional de Promoción Científica y Tecnológica; BID 1728 OC.AR. T 2012-0924 Argentina (to Dr. Bisagno) and FONCYT-Agencia Nacional de Promoción Científica y Tecnológica; BID 1728 OC.AR. PICT-2012-1769, Argentina, and UBACYT 2014-2017 #20120130101305BA (to Dr. Urbano). In addition, this work was supported by core facilities of the Center for Translational Neuroscience, UAMS, USA, supported by NIH award P20 GM110702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Bisagno.

Additional information

Javier A. Muñiz and Gimena Gomez have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñiz, J.A., Gomez, G., González, B. et al. Combined Effects of Simultaneous Exposure to Caffeine and Cocaine in the Mouse Striatum. Neurotox Res 29, 525–538 (2016). https://doi.org/10.1007/s12640-016-9601-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9601-0

Keywords

Navigation