Skip to main content
Log in

A Novel Compound ITC-3 Activates the Nrf2 Signaling and Provides Neuroprotection in Parkinson’s Disease Models

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder accompanied by a selective loss of the dopamine(DA)ergic neurons residing in the substantia nigra. There is ample evidence that neuroinflammation and oxidative stress are involved in the pathogenesis of PD. In the present study, we aimed at protecting the DAergic neurons by suppressing these cellular events and generated a novel synthetic isothiocyanate ITC-3. The compound led to elevation of nuclear and total levels of the transcription factor Nrf2 and interacted with its binding protein Keap1 with high affinity, suggesting Nrf2 activation. ITC-3 was able to suppress production of the proinflammatory mediators in lipopolysaccharide-activated BV-2 microglial cells. It also increased mRNA and protein levels of the Nrf2-dependent antioxidant enzymes NAD(P)H quinone oxidoreductase, heme oxygenase-1, and glutamylcysteine ligase in both BV-2 and DAergic neuronal CATH.a cells. The compound protected the DAergic cells against oxidative stress. In vivo, ITC-3 attenuated the loss of tyrosine hydroxylase-immunopositive nigrostriatal DAergic neurons, suppressed microglial activation, and abolished PD-associated motor deficits in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-elicited animal model of PD. Taken together, ITC-3 may be useful toward development of neuroprotective therapy for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BH4:

Tetrahydrobiopterin

BSA:

Bovine serum albumin

DA:

Dopamine

DMSO:

Dimethyl sulfoxide

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GCLC:

Glutamate-cysteine ligase catalytic subunit

GCLM:

Glutamate-cysteine ligase modulatory subunit

HO-1:

Heme oxygenase-1

IL-1β:

Interleukin-1β

iNOS:

Inducible nitric oxide synthase

LDH:

Lactate dehydrogenase

LPS:

Lipopolysaccharide

MPP+ :

1-methyl-4-phenylpyridinium

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

Nrf2:

Nf-E2-related factor 2

NQO1:

NAD(P)H quinone oxidoreductase

NO:

Nitric oxide

PD:

Parkinson’s disease

PMSF:

Phenylmethylsulfonyl fluoride

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription-polymerase chain reaction

SN:

Substantia nigra

SPR:

Surface plasmon resonance

TH:

Tyrosine hydroxylase

TNF-α:

Tumor necrosis factor-α

References

  • Ahn KS, Sethi G, Jain AK, Jaiswal AK, Aggarwal BB (2006) Genetic deletion of NAD(P)H:quinone oxidoreductase 1 abrogates activation of nuclear factor-kappaB, IkappaBalpha kinase, c-Jun N-terminal kinase, Akt, p38, and p44/42 mitogen-activated protein kinases and potentiates apoptosis. J Biol Chem 281:19798–19808

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE (2004) Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 6:259–280

    PubMed  PubMed Central  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25

    Article  PubMed  Google Scholar 

  • Biswas S, Hwang JW, Kirkham PA, Rahman I (2013) Pharmacological and dietary antioxidant therapies for chronic obstructive pulmonary disease. Curr Med Chem 20:1496–1530

    Article  CAS  PubMed  Google Scholar 

  • Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229–237

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Burton NC, Kensler TW, Guilarte TR (2006) In vivo modulation of the parkinsonian phenotype by Nrf2. Neurotoxicology 27:1094–1100

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Son HJ, Kim EM, Choi JH, Kim ST, Ji IJ, Choi DH, Joh TH, Kim YS, Hwang O (2009) Doxycycline is neuroprotective against nigral dopaminergic degeneration by a dual mechanism involving MMP-3. Neurotox Res 16:361–371

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Jang YJ, Kim HJ, Hwang O (2000) Tetrahydrobiopterin is released from and causes preferential death of catecholaminergic cells by oxidative stress. Mol Pharmacol 58:633–640

    CAS  PubMed  Google Scholar 

  • Choi HJ, Kim SW, Lee SY, Hwang O (2003) Dopamine-dependent cytotoxicity of tetrahydrobiopterin: a possible mechanism for selective neurodegeneration in Parkinson’s disease. J Neurochem 86:143–152

    Article  CAS  PubMed  Google Scholar 

  • Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 294:1346–1349

    Article  CAS  PubMed  Google Scholar 

  • Cook AL, Vitale AM, Ravishankar S, Matigian N, Sutherland GT, Shan J, Sutharsan R, Perry C, Silburn PA, Mellick GD, Whitelaw ML, Wells CA, Mackay-Sim A, Wood SA (2011) NRF2 activation restores disease related metabolic deficiencies in olfactory neurosphere-derived cells from patients with sporadic Parkinson’s disease. PLoS One 6:e21907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N, Williams C, Risingsong R, Honda T, Gribble GW, Sporn MB, Talalay P (2005) Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci USA 102:4584–4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fourquet S, Guerois R, Biard D, Toledano MB (2010) Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J Biol Chem 285:8463–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Ghosh A, Roy A, Matras J, Brahmachari S, Gendelman HE, Pahan K (2009) Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurosci 29:13543–13556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354

    Article  CAS  PubMed  Google Scholar 

  • Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 14:644–653

    CAS  PubMed  Google Scholar 

  • Guerrero-Beltrán CE, Mukhopadhyay P, Horváth B, Rajesh M, Tapia E, García-Torres I, Pedraza-Chaverri J, Pacher P (2012) Sulforaphane, a natural constituent of broccoli, prevents cell death and inflammation in nephropathy. J Nutr Biochem 23:494–500

    Article  PubMed  PubMed Central  Google Scholar 

  • Han JM, Lee YJ, Lee SY, Kim EM, Moon Y, Kim HW, Hwang O (2007) Protective effect of sulforaphane against dopaminergic cell death. J Pharmacol Exp Ther 321:249–256

    Article  CAS  PubMed  Google Scholar 

  • Harada S, Fujii C, Hayashi A, Ohkoshi N (2001) An association between idiopathic Parkinson’s disease and polymorphisms of phase II detoxification enzymes: glutathione S-transferase M1 and quinone oxidoreductase 1 and 2. Biochem Biophys Res Commun 288:887–892

    Article  CAS  PubMed  Google Scholar 

  • Hastings TG (2009) The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J Bioenerg Biomembr 41:469–472

    Article  CAS  PubMed  Google Scholar 

  • Hwang O, Kim G, Jang YJ, Kim SW, Choi G, Choi HJ, Jeon SY, Lee DG, Lee JD (2001) Synthetic phytoceramides induce apoptosis with higher potency than ceramides. Mol Pharmacol 59:1249–1255

    CAS  PubMed  Google Scholar 

  • Imaizumi Y, Okada Y, Akamatsu W, Koike M, Kuzumaki N, Hayakawa H, Nihira T, Kobayashi T, Ohyama M, Sato S, Takanashi M, Funayama M, Hirayama A, Soga T, Hishiki T, Suematsu M, Yagi T, Ito D, Kosakai A, Hayashi K, Shouji M, Nakanishi A, Suzuki N, Mizuno Y, Mizushima N, Amagai M, Uchiyama Y, Mochizuki H, Hattori N, Okano H (2012) Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol Brain 5:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innamorato NG, Rojo AI, García-Yagüe AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181:680–689

    Article  CAS  PubMed  Google Scholar 

  • Innamorato NG, Jazwa A, Rojo AI, Garcı´a C, Ferna´ndez-Ruiz J, Grochot-Przeczek A, Stachurska A, Jozkowicz A, Dulak J, Cuadrado A (2010) Different susceptibility to the Parkinson’s toxin MPTP in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1. PLoS One 5:e11838

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernández-Ruiz J, Cuadrado A (2011) Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal 14:2347–2360

    Article  CAS  PubMed  Google Scholar 

  • Jiang XH, Yang H, Yang JF, Wang HT, Xu QY, Chen B (2004) A study on the relationship between polymorphism of human NAD(P)H: quinone oxidoreductase and Parkinson’s disease in Chinese. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 21:120–123

    CAS  PubMed  Google Scholar 

  • Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen JG, Chen TY, Fahey JW, Talalay P (2013) Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane. Top Curr Chem 329:163–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Choi DH, Block ML, Lorenzl S, Yang L, Kim YJ, Sugama S, Cho BP, Hwang O, Browne SE, Kim SY, Hong JS, Beal MF, Joh TH (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J 21:179–187

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Son HJ, Choi JH, Ji IJ, Hwang O (2010) Vertical grid test and modified horizontal grid test are sensitive methods for evaluating motor dysfunctions in the MPTP mouse model of Parkinson’s disease. Brain Res 1306:176–183

    Article  CAS  PubMed  Google Scholar 

  • La Voie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1214–1221

    Article  Google Scholar 

  • Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rábano A, Kirik D, Cuadrado A (2012) α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet 21:3173–3192

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224:171–184

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Moon YH, Choi DH, Choi HJ, Hwang O (2007) Particular vulnerability of rat mesencephalic dopaminergic neurons to tetrahydrobiopterin: relevance to Parkinson’s disease. Neurobiol Dis 25:112–120

    Article  CAS  PubMed  Google Scholar 

  • Lee JA, Kim JH, Woo SY, Son HJ, Han SH, Jang BK, Choi JW, Kim DJ, Park KD, Hwang O (2015) A novel compound VSC2 has anti-inflammatory and antioxidant properties in microglia and in Parkinson’s disease animal model. Br J Pharmacol 172:1087–1100

    Article  CAS  PubMed  Google Scholar 

  • Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, Fenton MJ, Oikawa M, Qureshi N, Monks B, Finberg RW, Ingalls RR, Golenbock DT (2000) Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 105:497–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Du L, Hong JS (2000) Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 293:607–617

    CAS  PubMed  Google Scholar 

  • Mandel SA, Weinreb O, Amit T, Youdim MB (2012) Molecular mechanisms of the neuroprotective/neurorescue action of muti-target green tea polyphenols. Front Biosci S4:581–598

    Article  CAS  Google Scholar 

  • Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118:777–788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A, Bellette B, An J, Anderson M, Beckhouse AG, Bennebroek M, Cecil R, Chalk AM, Cochrane J, Fan Y, Féron F, McCurdy R, McGrath JJ, Murrell W, Perry C, Raju J, Ravishankar S, Silburn PA, Sutherland GT, Mahler S, Mellick GD, Wood SA, Sue CM, Wells CA, Mackay-Sim A (2010) Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech 3:785–798

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki I, Asanuma M (2009) Approaches to prevent dopamine quinone-induced neurotoxicity. Neurochem Res 34:698–706

    Article  CAS  PubMed  Google Scholar 

  • Paine A, Eiz-Vesper B, Blasczyk R, Immenschuh S (2010) Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol 80:1895–1903

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Kim JW, Lee CM, Kim YD, Chung SW, Jung ID, Noh KT, Park JW, Heo DR, Shin YK, Seo JK, Park YM (2012) Sulforaphane inhibits the Th2 immune response in ovalbumin-induced asthma. BMB Rep 45:311–316

    Article  CAS  PubMed  Google Scholar 

  • Pei Z, Pang H, Qian L, Yang S, Wang T, Zhang W, Wu X, Dallas S, Wilson B, Reece JM, Miller DS, Hong JS, Block ML (2007) MAC1 mediates LPS-induced production of superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 55:1362–1373

    Article  PubMed  Google Scholar 

  • Philbrook NA, Winn LM (2014) Sub-chronic sulforaphane exposure in CD-1 pregnant mice enhances maternal NADPH quinone oxidoreductase 1 (NQO1) activity and mRNA expression of NQO1, glutathione S-transferase, and glutamate-cysteine ligase: potential implications for fetal protection against toxicant exposure. Reprod Toxicol 43:30–37

    Article  CAS  PubMed  Google Scholar 

  • Rojo AI, Innamorato NG, Martín-Moreno AM, De Ceballos ML, Yamamoto M, Cuadrado A (2010) Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58:588–598

    PubMed  Google Scholar 

  • Rushworth SA, MacEwan DJ, O’Connell MA (2008) Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol 181:6730–6737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar GP, Janakiraman U, Essa MM, Justin Thenmozhi A, Manivasagam T (2014) Escin attenuates behavioral impairments, oxidative stress and inflammation in a chronic MPTP/probenecid mouse model of Parkinson’s disease. Brain Res 1585:23–36

    Article  CAS  PubMed  Google Scholar 

  • Shinkai Y, Sumi D, Fukami I, Ishii T, Kumagai Y (2006) Sulforaphane, an activator of Nrf2, suppresses cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes. FEBS Lett 580:1771–1774

    Article  CAS  PubMed  Google Scholar 

  • Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55:412–424

    Article  PubMed  Google Scholar 

  • Son HJ, Lee JA, Shin N, Choi JH, Seo JW, Chi DY, Lee CS, Kim EM, Choe H, Hwang O (2012) A novel compound PTIQ protects the nigral dopaminergic neurones in an animal model of Parkinson’s disease induced by MPTP. Br J Pharmacol 165:2213–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suri C, Fung BP, Tischler AS, Chikaraishi DM (1993) Catecholaminergic cell lines from the brain and adrenal glands of tyrosine hydroxylase-SV40 T antigen transgenic mice. J Neurosci 13:1280–1291

    CAS  PubMed  Google Scholar 

  • Syapin PJ (2008) Regulation of haeme oxygenase1for treatment of neuroinflammation and brain disorders. Br J Pharmacol 155:623–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Laar VS, Mishizen AJ, Cascio M, Hastings TG (2009) Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis 34:487–500

    Article  PubMed  PubMed Central  Google Scholar 

  • von Otter M, Landgren S, Nilsson S, Celojevic D, Bergström P, Håkansson A, Nissbrandt H, Drozdzik M, Bialecka M, Kurzawski M, Blennow K, Nilsson M, Hammarsten O, Zetterberg H (2010) Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson’s disease. BMC Med Genet 11:36

    Article  Google Scholar 

  • von Otter M, Bergström P, Quattrone A, De Marco EV, Annesi G, Söderkvist P, Wettinger SB, Drozdzik M, Bialecka M, Nissbrandt H, Klein C, Nilsson M, Hammarsten O, Nilsson S, Zetterberg H (2014) Genetic associations of Nrf2-encoding NFE2L2 variants with Parkinson’s disease—a multicenter study. BMC Med Genet 15:131

    Article  Google Scholar 

  • Woo SY, Kim JH, Moon MK, Han SH, Yeon SK, Choi JW, Jang BK, Song HJ, Kang YG, Kim JW, Lee J, Kim DJ, Hwang O, Park KD (2014) Discovery of vinyl sulfones as a novel class of neuroprotective agents toward Parkinson’s disease therapy. J Med Chem 57:1473–1487

    Article  CAS  PubMed  Google Scholar 

  • Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    CAS  PubMed  Google Scholar 

  • Zafar KS, Inayat-Hussain SH, Siegel D, Bao A, Shieh B, Ross D (2006) Overexpression of NQO1 protects human SK-N-MC neuroblastoma cells against dopamine-induced cell death. Toxicol Lett 166:261–267

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Wilms H, Geick S, Claasen JH, Brandenburg LO, Holzknecht C, Panizza ML, Zucca FA, Deuschl G, Sievers J, Lucius R (2008) Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol 116:47–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19:533–542

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZD, Lim TM (2010) Glutathione conjugates with dopamine-derived quinones to form reactive or non-reactive glutathione-conjugates. Neurochem Res 35:1805–1818

    Article  CAS  PubMed  Google Scholar 

  • Zhou HF, Liu XY, Niu DB, Li FQ, He QH, Wang XM (2005) Triptolide protects dopaminergic neurons from inflammation-mediated damage induced by lipopolysaccharide intranigral injection. Neurobiol Dis 18:441–449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JA Lee and HJ Son made equal contributions. We thank Dr. Ghilsoo Nam for her participation in the synthesis of ITC-3. This study was supported by the National Agenda Project from Korea Research Council of Fundamental Science and Technology (OH) and in part by the National Research Foundation of Korea (NRF-2009-0081674, DJK; NRF-2009-0081675, OH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onyou Hwang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.A., Son, H.J., Park, K.D. et al. A Novel Compound ITC-3 Activates the Nrf2 Signaling and Provides Neuroprotection in Parkinson’s Disease Models. Neurotox Res 28, 332–345 (2015). https://doi.org/10.1007/s12640-015-9550-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9550-z

Keywords

Navigation