Skip to main content
Log in

Antioxidant Activity, Cellular Bioavailability, and Iron and Calcium Management of Neuroprotective and Nonneuroprotective Flavones

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Few studies have been undertaken on the relationship of the structure of flavones and neuroprotection. Previously, we described the structural determinants of the neuroprotective activity of some natural flavones in cerebellar granule neurons in culture against an oxidative insult (H2O2). In the present work, we analyzed anti-oxidant activity, cellular iron, and Ca2+ levels and cellular bioavailability of neuroprotective and nonneuroprotective flavones in the same experimental paradigm. Oxidative cellular damage produced by H2O2 was prevented by all of the studied flavones with rather similar potency for all of them. Labile Iron Pool was neither affected by protective nor nonprotective flavones. Intracellular Ca2+ homeostasis was not affected by protective flavones either. Nonetheless, fisetin, the nonprotective flavone, decreased Ca2+ levels modifying Ca2+ homeostasis. Methylation of the catechol group, although weakens anti-oxidant capacity, keeps the neuroprotective capacity with less degradation and lower toxicity, constituting promising structural alternatives as leads for the design of neuroprotective molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Because they all share the basic backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one), the molecules studied can be primarily considered as flavones and as such are taken in this work, knowing that as hydroxyl flavones they can also be considered as flavonols.

References

  • Almajano MP, Vila I, Gines S (2011) Neuroprotective effects of white tea against oxidative stress-induced toxicity in striatal cells. Neurotox Res 20:372–378

    Article  CAS  PubMed  Google Scholar 

  • Andersen OM, Markham KR (2010) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  • Arredondo F, Echeverry C, Abin-Carriquiry JA, Blasina F, Antúnez K, Jones DP, Go YM, Liang YL, Dajas F (2010) After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic Biol Med 49:738–747

    Article  CAS  PubMed  Google Scholar 

  • Bors W, Heller W, Michel C, Saran M (1990) Radical chemistry of flavonoid antioxidants. Adv Exp Med Biol 264:165–170

    Article  CAS  PubMed  Google Scholar 

  • Breuer W, Epsztejn S, Millgram P, Cabantchik ZI (1995) Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am J Physiol 268:1354–1361

    Google Scholar 

  • Chan EC, Pannangpetch P, Woodman OL (2000) Relaxation to flavones and flavonols in rat isolated thoracic aorta: mechanism of action and structure–activity relationships. Cardiovasc Pharmacol 35:326–333

    Article  CAS  Google Scholar 

  • Chang H, Mi M, Ling W, Zhu J, Zhang Q, Wei N, Zhou Y, Tang Y, Yuan J (2008) Structurally related cytotoxic effects of flavonoids on human cancer cells in vitro. Arch Pharm Res 31:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Clifford M (2001) A nomenclature for phenols with special reference to tea. Crit Rev Food Sci Nutr 41:393–397

    Google Scholar 

  • Dajas F (2012) Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol 143:383–396

    Article  CAS  PubMed  Google Scholar 

  • Dajas F, Rivera F, Blasina F, Arredondo F, Echeverry C, Lafon L, Morquio A, Heizen H (2003) Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox Res 5:425–432

    Article  PubMed  Google Scholar 

  • Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  CAS  PubMed  Google Scholar 

  • Draper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, Hadley M (1993) A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med 15:353–363

    Article  CAS  PubMed  Google Scholar 

  • Echeverry C, Arredondo F, Abin-Carriquiry JA, Midiwo JO, Ochieng C, Kerubo L, Dajas F (2010) Pretreatment with natural flavones and neuronal cell survival after oxidative stress: a structure–activity relationship study. J Agric Food Chem 58:2111–2115

    Article  CAS  PubMed  Google Scholar 

  • Franklin JL, Johnson EM (1992) Suppression of programmed neuronal death by sustained elevation of cytoplasmic calcium. Trends Neurosci 15:501–508

    Article  CAS  PubMed  Google Scholar 

  • García O, Massieu L (2001) Strategies for neuroprotection against l-trans-2,4-pyrrolidine dicarboxylate-induced neuronal damage during energy impairment in vitro. J Neurosci Res 64:418–428

    Article  PubMed  Google Scholar 

  • Harborne JB (ed) (1994) The flavonoids, advances in research since 1986. Chapman and Hall, London

    Google Scholar 

  • Heijnen CG, Haenen GR, Vekemans JA, Bast A (2001) Peroxynitrite scavenging of flavonoids: structure activity relationship. Environ Toxicol Pharmacol 10:199–206

    Article  CAS  PubMed  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  PubMed  Google Scholar 

  • Juma BF, Yenese A, Midiwo JO, Waterman PG (2001) Flavones and phenylpropenoids in the surface exudate of Psiadia punctulata. Phytochemistry 57:571–574

    Article  CAS  PubMed  Google Scholar 

  • Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 531:81–92

    Article  CAS  PubMed  Google Scholar 

  • Li S, Pu XP (2011) Neuroprotective effect of kaempferol against a 1- methyl-4-phenyl-1.2.3.6-tetrahydropyridine-induced mouse model of Parkinson´s disease. Biol Pharm Bull 34:1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Liu WB, Wang YP (2001) Magnesium lithospermate B inhibits hypoxia-induced calcium influx and nitric oxide release in endothelial cell. Acta Pharmacol Sin 22:1135–1142

    Google Scholar 

  • Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    CAS  PubMed  Google Scholar 

  • Miller NJ, Rice-Evans C, Davies MJ, Gapinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in prematures neonates. Clin Sci 84:407–412

    CAS  PubMed  Google Scholar 

  • Mira L, Fernández MT, Santos M, Rocha R, Florencio MH, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Mueller H, Kassack MU, Wiese M (2004) Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J Biomol Screen 9:506–515

    Article  CAS  PubMed  Google Scholar 

  • Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    CAS  PubMed  Google Scholar 

  • Okimotoa Y, Watanabea A, Nikia E, Yamashitab T, Noguchia N (2000) A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett 474:137–140

    Article  CAS  PubMed  Google Scholar 

  • Ossola B, Kääriäinen TM, Männistö PT (2009) The multiple faces of quercetin in neuroprotection. Expert Opin Drug Saf 8:397–409

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Kuo SM (2003) Flavonoid structure affects the inhibition of lipid peroxidation in Caco-2 intestinal cells at physiological concentrations. J Nutr 133:2184–2187

    CAS  PubMed  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans C (2001) Flavonoid antioxidants. Curr Med Chem 8:797–807

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  • Simonyi A, Wang Q, Miller RL, Yusof M, Shelat PB, Sun AY, Sun GY (2005) Polyphenols in cerebral ischemia: novel targets for neuroprotection. Mol Neurobiol 31:135–147

    Article  CAS  PubMed  Google Scholar 

  • Spencer JP (2009) Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr 4:243–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walle T (2009) Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. Int J Mol Sci 10:5002–5019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Joseph JA (1999) Structure–activity relationships of quercetin in antagonizing hydrogen peroxide-induced calcium dysregulation in PC12 cells. Free Radic Biol Med 27:683–694

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ, Spencer JPE, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    Article  CAS  PubMed  Google Scholar 

  • Yenesew A, Irungu B, Derese S, Midiwo JO, Heydenreich M, Peter MG (2003) Two prenylated flavonoids from the stem bark of Erythrina burttii. Phytochemistry 63:445–448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant L/ICA/139636 from the International Cooperation and Assistance Office of the OPCW (Organization for the Prohibition of Chemical Weapons), The Hague, The Netherlands. We thank Prof. Prem Ponka for the generous gift of the iron chelator SIH.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Echeverry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echeverry, C., Arredondo, F., Martínez, M. et al. Antioxidant Activity, Cellular Bioavailability, and Iron and Calcium Management of Neuroprotective and Nonneuroprotective Flavones. Neurotox Res 27, 31–42 (2015). https://doi.org/10.1007/s12640-014-9483-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9483-y

Keywords

Navigation