Skip to main content
Log in

Intrastriatal 6-OHDA Lesion Differentially Affects Dopaminergic Neurons in the Ventral Tegmental Area of Prenatally Stressed Rats

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Exposure to a variety of stressful events during the last week of pregnancy in rats interferes with the correct progeny development, which in turn leads to delays in motor development, impaired adaptation to stressful conditions, altered sexual behaviour, learning deficits, neuronal development and brain morphology. Many of these alterations have been attributed to changes in dopamine (DA) neurotransmission and occur primarily in the mesolimbic system. We found that prenatally stressed offspring showed higher levels of cells expressing tyrosine hydroxylase (TH) in the ventral tegmental area (VTA) and that these cells were more susceptible to a neurochemical insult with 6-hydroxy-DA (6-OHDA) in adulthood. Moreover, prenatally stressed rats presented differences in terms of the number and asymmetry of neuronal nitric oxide synthase-expressing cells in the VTA and nucleus accumbens, respectively. Similar to the results described for TH-expressing cells, the nitrergic systems were differentially regulated after 6-OHDA lesion in control and prenatally stressed rats. These results indicated that prenatal stress affects the dopaminergic and nitrergic systems in the mesolimbic pathway. In addition, we propose that the mesolimbic areas are more susceptible than the motor areas to a neurochemical insult during adult life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrover E, Berger MA, Perez AA, Tarazi FI, Antonelli MC (2007) Effects of prenatal stress on dopamine D2 receptor asymmetry in rat brain. Synapse 61(6):459–462

    Article  CAS  PubMed  Google Scholar 

  • Baier CJ, Katunar MR, Adrover E, Pallares ME, Antonelli MC (2012) Gestational restraint stress and the developing dopaminergic system: an overview. Neurotox Res 22(1):16–32. doi:10.1007/s12640-011-9305-4

    Article  CAS  PubMed  Google Scholar 

  • Balda MA, Anderson KL, Itzhak Y (2009) The neuronal nitric oxide synthase (nNOS) gene contributes to the regulation of tyrosine hydroxylase (TH) by cocaine. Neurosci Lett 457(3):120–124. doi:10.1016/j.neulet.2009.04.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barros VG, Berger MA, Martijena ID, Sarchi MI, Perez AA, Molina VA, Tarazi FI, Antonelli MC (2004) Early adoption modifies the effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. J Neurosci Res 76(4):488–496

    Article  CAS  PubMed  Google Scholar 

  • Barthwal MK, Srivastava N, Dikshit M (2001) Role of nitric oxide in a progressive neurodegeneration model of Parkinson’s disease in the rat. Redox Rep Commun Free Radic Res 6(5):297–302

    Article  CAS  Google Scholar 

  • Berger MA, Barros VG, Sarchi MI, Tarazi FI, Antonelli MC (2002) Long-term effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. Neurochem Res 27(11):1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS, Snyder SH (1992) Nitric oxide, a novel neuronal messenger. Neuron 8(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Darnaudery M, Maccari S (2008) Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res Rev 57(2):571–585. doi:10.1016/j.brainresrev.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88(14):6368–6371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Debeir T, Ginestet L, Francois C, Laurens S, Martel JC, Chopin P, Marien M, Colpaert F, Raisman-Vozari R (2005) Effect of intrastriatal 6-OHDA lesion on dopaminergic innervation of the rat cortex and globus pallidus. Exp Neurol 193(2):444–454. doi:10.1016/j.expneurol.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  • Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175(2):303–317. doi:10.1006/exnr.2002.7891

    Article  CAS  PubMed  Google Scholar 

  • Estevez AG, Spear N, Thompson JA, Cornwell TL, Radi R, Barbeito L, Beckman JS (1998) Nitric oxide-dependent production of cGMP supports the survival of rat embryonic motor neurons cultured with brain-derived neurotrophic factor. J Neurosci 18(10):3708–3714

    CAS  PubMed  Google Scholar 

  • Eve DJ, Nisbet AP, Kingsbury AE, Hewson EL, Daniel SE, Lees AJ, Marsden CD, Foster OJ (1998) Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease. Brain Res Mol Brain Res 63(1):62–71

    Article  CAS  PubMed  Google Scholar 

  • Fride E, Weinstock M (1989) Alterations in behavioral and striatal dopamine asymmetries induced by prenatal stress. Pharmacol Biochem Behav 32(2):425–430

    Article  CAS  PubMed  Google Scholar 

  • Gomes MZ, Del Bel EA (2003) Effects of electrolytic and 6-hydroxydopamine lesions of rat nigrostriatal pathway on nitric oxide synthase and nicotinamide adenine dinucleotide phosphate diaphorase. Brain Res Bull 62(2):107–115

    Article  CAS  PubMed  Google Scholar 

  • Gomes MZ, Raisman-Vozari R, Del Bel EA (2008) A nitric oxide synthase inhibitor decreases 6-hydroxydopamine effects on tyrosine hydroxylase and neuronal nitric oxide synthase in the rat nigrostriatal pathway. Brain Res 1203:160–169. doi:10.1016/j.brainres.2008.01.088

    Article  CAS  PubMed  Google Scholar 

  • Ha KS, Kim KM, Kwon YG, Bai SK, Nam WD, Yoo YM, Kim PK, Chung HT, Billiar TR, Kim YM (2003) Nitric oxide prevents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3 kinase/Akt activation. FASEB J Off Publ Fed Am Soc Exp Biol 17(9):1036–1047. doi:10.1096/fj.02-0738com

    CAS  Google Scholar 

  • Hausknecht K, Haj-Dahmane S, Shen RY (2013) Prenatal stress exposure increases the excitation of dopamine neurons in the ventral tegmental area and alters their responses to psychostimulants. Neuropsychopharmacology 38(2):293–301. doi:10.1038/npp.2012.168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoque KE, West AR (2012) Dopaminergic modulation of nitric oxide synthase activity in subregions of the rat nucleus accumbens. Synapse 66(3):220–231. doi:10.1002/syn.21503

    Article  CAS  PubMed  Google Scholar 

  • Huizink AC, Mulder EJ, Buitelaar JK (2004) Prenatal stress and risk for psychopathology: specific effects or induction of general susceptibility? Psychol Bull 130(1):115–142. doi:10.1037/0033-2909.130.1.115

    Article  PubMed  Google Scholar 

  • Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Investig 111(2):163–169. doi:10.1172/JCI17638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katunar M, Saez T, Brusco A, Antonelli M (2009) Immunocytochemical expression of dopamine-related transcription factors Pitx3 and Nurr1 in prenatally stressed adult rats. J Neurosci Res 87:1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Katunar M, Saez T, Brusco A, Antonelli M (2010) Ontogenetic expression of dopamine-related transcription factors and tyrosine hydroxylase in prenatally stressed rats. Neurotox Res 18(1):69–81

    Article  PubMed  Google Scholar 

  • Kim YM, Chung HT, Kim SS, Han JA, Yoo YM, Kim KM, Lee GH, Yun HY, Green A, Li J, Simmons RL, Billiar TR (1999) Nitric oxide protects PC12 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signaling. J Neurosci 19(16):6740–6747

    CAS  PubMed  Google Scholar 

  • Kiss JP, Hennings EC, Zsilla G, Vizi ES (1999) A possible role of nitric oxide in the regulation of dopamine transporter function in the striatum. Neurochem Int 34(4):345–350

    Article  CAS  PubMed  Google Scholar 

  • Klejbor I, Domaradzka-Pytel B, Ludkiewicz B, Wojcik S, Morys J (2004) The relationships between neurons containing dopamine and nitric oxide synthase in the ventral tegmental area. Folia Histochem Cytobiol 42(2):83–87

    CAS  PubMed  Google Scholar 

  • Kofman O (2002) The role of prenatal stress in the etiology of developmental behavioural disorders. Neurosci Biobehav Rev 26(4):457–470

    Article  CAS  PubMed  Google Scholar 

  • Kuter K, Kolasiewicz W, Golembiowska K, Dziubina A, Schulze G, Berghauzen K, Wardas J, Ossowska K (2011) Partial lesion of the dopaminergic innervation of the ventral striatum induces “depressive-like” behavior of rats. Pharmacol Rep 63(6):1383–1392

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Park GH, Jang JH (2011) Cellular antioxidant adaptive survival response to 6-hydroxydopamine-induced nitrosative cell death in C6 glioma cells. Toxicology 283(2–3):118–128. doi:10.1016/j.tox.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  • Lemaire V, Koehl M, Le Moal M, Abrous DN (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 97(20):11032–11037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maccari S, Piazza PV, Kabbaj M, Barbazanges A, Simon H, Le Moal M (1995) Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. J Neurosci 15(1 Pt 1):110–116

    CAS  PubMed  Google Scholar 

  • Markham JA, Taylor AR, Taylor SB, Bell DB, Koenig JI (2010) Characterization of the cognitive impairments induced by prenatal exposure to stress in the rat. Front Behav Neurosci 4:173. doi:10.3389/fnbeh.2010.00173

    PubMed Central  PubMed  Google Scholar 

  • McArthur S, McHale E, Dalley JW, Buckingham JC, Gillies GE (2005) Altered mesencephalic dopaminergic populations in adulthood as a consequence of brief perinatal glucocorticoid exposure. J Neuroendocrinol 17(8):475–482. doi:10.1111/j.1365-2826.2005.01331.x

    Article  CAS  PubMed  Google Scholar 

  • McArthur S, McHale E, Gillies GE (2007) The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocorticoid exposure in a sex- region- and time-specific manner. Neuropsychopharmacology 32(7):1462–1476. doi:10.1038/sj.npp.1301277

    Article  CAS  PubMed  Google Scholar 

  • Ohno M, Arai I, Watanabe S (1995) N-Methyl-d-aspartate stimulates dopamine release through nitric oxide formation in the nucleus accumbens of rats. Brain Res 699(2):332–335

    Article  CAS  PubMed  Google Scholar 

  • Pallares ME, Baier CJ, Adrover E, Monteleone MC, Brocco MA, Antonelli MC (2013) Age-dependent effects of prenatal stress on the corticolimbic dopaminergic system development in the rat male offspring. Neurochem Res 38(11):2323–2335. doi:10.1007/s11064-013-1143-8

    Article  CAS  PubMed  Google Scholar 

  • Pardon MC, Rattray I (2008) What do we know about the long-term consequences of stress on ageing and the progression of age-related neurodegenerative disorders? Neurosci Biobehav Rev 32(6):1103–1120. doi:10.1016/j.neubiorev.2008.03.005

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM (1995) Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 67(3):631–647

    Article  CAS  PubMed  Google Scholar 

  • Rice F, Jones I, Thapar A (2007) The impact of gestational stress and prenatal growth on emotional problems in offspring: a review. Acta Psychiatr Scand 115(3):171–183. doi:10.1111/j.1600-0447.2006.00895.x

    Article  CAS  PubMed  Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11(3–4):151–167

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar S, Dikshit M (2010) Involvement of the mitochondrial apoptotic pathway and nitric oxide synthase in dopaminergic neuronal death induced by 6-hydroxydopamine and lipopolysaccharide. Redox Rep Commun Free Radic Res 15(3):115–122. doi:10.1179/174329210X12650506623447

    Article  CAS  Google Scholar 

  • Smidt MP, Burbach JP (2007) How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 8(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Kitai ST (2001) Unilateral striatal dopamine depletion: time-dependent effects on cortical function and behavioural correlates. Eur J Neurosci 14(8):1390–1404

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Guan L, Zhu Z, Li H (2013) Reduced levels of NR1 and NR2A with depression-like behavior in different brain regions in prenatally stressed juvenile offspring. PLoS ONE 8(11):e81775. doi:10.1371/journal.pone.0081775

    Article  PubMed Central  PubMed  Google Scholar 

  • Ward IL, Weisz J (1984) Differential effects of maternal stress on circulating levels of corticosterone, progesterone, and testosterone in male and female rat fetuses and their mothers. Endocrinology 114(5):1635–1644

    Article  CAS  PubMed  Google Scholar 

  • Weinstock M (2001) Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol 65(5):427–451

    Article  CAS  PubMed  Google Scholar 

  • Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32(6):1073–1086. doi:10.1016/j.neubiorev.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  • Yuste JE, Echeverry MB, Ros-Bernal F, Gomez A, Ros CM, Campuzano CM, Fernandez-Villalba E, Herrero MT (2012) 7-Nitroindazole down-regulates dopamine/DARPP-32 signaling in neostriatal neurons in a rat model of Parkinson’s disease. Neuropharmacology 63(7):1258–1267. doi:10.1016/j.neuropharm.2012.07.031

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263(5147):687–689

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Ana Maria Adamo and Ms. María Florencia Almeira Gubiani (Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina) for their valuable assistance in the stereotaxical experiments as well as Mr. Majid Amar (INSERM UMRS 975, CRICM, ICM, Thérapeutique Expérimentale de la Neurodégénérescence, Paris, France) for his assistance in IHC experiments. We are also indebted to Martin Brahamian and Mercedes Imsem (Universidad de Buenos Aires, Buenos Aires, Argentina) for their help and supervision in the management and care of the rats. The skilful technical assistance of Mrs. Susana Buglione (Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina) is greatly appreciated. This research was supported by Grants from CONICET (PIP 2065), ANPCYT (PICT 31981 and PICT 0040), and Bernardo Houssay Program (CONICET/MINCyT/France Embassy).

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta C. Antonelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baier, C.J., Pallarés, M.E., Adrover, E. et al. Intrastriatal 6-OHDA Lesion Differentially Affects Dopaminergic Neurons in the Ventral Tegmental Area of Prenatally Stressed Rats. Neurotox Res 26, 274–284 (2014). https://doi.org/10.1007/s12640-014-9479-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9479-7

Keywords

Navigation