Skip to main content

Advertisement

Log in

SUMO-1 is Associated with a Subset of Lysosomes in Glial Protein Aggregate Diseases

Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Oligodendroglial inclusion bodies characterize a subset of neurodegenerative diseases. Multiple system atrophy (MSA) is characterized by α-synuclein glial cytoplasmic inclusions and progressive supranuclear palsy (PSP) is associated with glial tau inclusions. The ubiquitin homologue, SUMO-1, has been identified in inclusion bodies in MSA, located in discrete sub-domains in α-synuclein-positive inclusions. We investigated SUMO-1 associated with oligodendroglial inclusion bodies in brain tissue from MSA and PSP and in glial cell models. We examined MSA and PSP cases and compared to age-matched normal controls. Fluorescence immunohistochemistry revealed frequent SUMO-1 sub-domains within and surrounding inclusions bodies in both diseases and showed punctate co-localization of SUMO-1 and the lysosomal marker, cathepsin D, in affected brain regions. Cell counting data revealed that 70–75 % of lysosomes in inclusion body-positive oligodendrocytes were SUMO-1-positive consistently across MSA and PSP cases, compared to 20 % in neighbouring inclusion body negative oligodendrocytes and 10 % in normal brain tissue. Hsp90 co-localized with some SUMO-1 puncta. We examined the SUMO-1 status of lysosomes in 1321N1 human glioma cells over-expressing α-synuclein and in immortalized rat oligodendrocyte cells over-expressing the four repeat form of tau following treatment with the proteasome inhibitor, MG132. We also transfected 1321N1 cells with the inherently aggregation-prone huntingtin exon 1 mutant, HttQ74-GFP. Each cell model showed the association of SUMO-1-positive lysosomes around focal cytoplasmic accumulations of α-synuclein, tau or HttQ74-GFP, respectively. Association of SUMO-1 with lysosomes was also detected in glial cells bearing α-synuclein aggregates in a rotenone-lesioned rat model. SUMO-1 labelling of lysosomes showed a major increase between 24 and 48 h post-incubation of 1321N1 cells with MG132 resulting in an increase in a 90 kDa SUMO-1-positive band that was immunopositive for Hsp90 and immunoprecipitated with an anti-SUMO-1 antibody. That SUMO-1 co-localizes with a subset of lysosomes in neurodegenerative diseases with glial protein aggregates and in glial cell culture models of protein aggregation suggests a role for SUMO-1 in lysosome function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Anderson DB, Wilkinson KA, Henley JM (2009) Protein SUMOylation in neuropathological conditions. Drug News Perspect 22:10

    Article  Google Scholar 

  • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  Google Scholar 

  • Cairns NJ, Atkinson PF, Hanger DP, Anderton BH, Daniel SE, Lantos PL (1997) Tau protein in the glial cytoplasmic inclusions of multiple system atrophy can be distinguished from abnormal tau in Alzheimer’s disease. Neurosci Lett 230:49–52

    Article  PubMed  CAS  Google Scholar 

  • Chin LS, Olzmann JA, Li L (2010) Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem Soc Trans 38:144–149

    Article  PubMed  CAS  Google Scholar 

  • Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH (2009) Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 35:385–398

    Article  PubMed  CAS  Google Scholar 

  • Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A, Galasko D, Masliah E (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 5:e9313

    Article  PubMed  Google Scholar 

  • De Silva R, Lashley T, Gibb G, Hanger D, Hope A, Reid A, Bandyopadhyay R, Utton M, Strand C, Jowett T, Khan N, Anderton B, Wood N, Holton J, Revesz T, Lees A (2003) Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol Appl Neurobiol 29:288–302

    Article  PubMed  Google Scholar 

  • Denison C, Rudner AD, Gerber SA, Bakalarski CE, Moazed D, Gygi SP (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteom 4:246–254

    Article  CAS  Google Scholar 

  • Ding H, Dolan PJ, Johnson GV (2008) Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem 106:2119–2130

    Article  PubMed  CAS  Google Scholar 

  • Gai WP, Power JH, Blumbergs PC, Blessing WW (1998) Multiple-system atrophy: a new alpha-synuclein disease? Lancet 352:547–548

    Article  PubMed  CAS  Google Scholar 

  • Dorval V, Fraser PE (2007) SUMO on the road to neurodegeneration. Biochim Biophys Acta 1773:694–706

    Google Scholar 

  • Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871

    Article  PubMed  CAS  Google Scholar 

  • Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280:4102–4110

    Article  PubMed  CAS  Google Scholar 

  • Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K (2003) The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J 22:3557–3567

    Article  PubMed  CAS  Google Scholar 

  • Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  • Kalia SK, Lee S, Smith PD, Liu L, Crocker SJ, Thorarinsdottir TE, Glover JR, Fon EA, Park DS, Lozano AM (2004) BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44:931–945

    Article  PubMed  CAS  Google Scholar 

  • Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, Orenstein SJ, Wong E, Cuervo AM (2011) Chaperone-mediated autophagy at a glance. J Cell Sci 124:495–499

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  PubMed  CAS  Google Scholar 

  • Kettern N, Dreiseidler M, Tawo R, Höhfeld J (2010) Chaperone-assisted degradation: multiple paths to destruction. Biol Chem 391:481–489

    Article  PubMed  CAS  Google Scholar 

  • Kim YM, Jang WH, Quezado MM, Oh Y, Chung KC, Junn E, Mouradian MM (2011) Proteasome inhibition induces α-synuclein SUMOylation and aggregate formation. J Neurol Sci 307:157–161

    Article  PubMed  CAS  Google Scholar 

  • Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516

    Article  PubMed  CAS  Google Scholar 

  • Kita H, Carmichael J, Swartz J, Muro S, Wyttenbach A, Matsubara K, Rubinsztein DC, Kato K (2002) Modulation of polyglutamine-induced cell death by genes identified by expression profiling. Hum Mol Genet 11:2279–2287

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Komori T (1999) Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick’s disease. Brain Pathol 9:663–679

    Article  PubMed  CAS  Google Scholar 

  • Kragh CL, Lund LB, Febbraro F, Hansen HD, Gai WP, El-Agnaf O, Richter-Landsberg C, Jensen PH (2009) {alpha}-Synuclein aggregation and Ser-129 phosphorylation-dependent cell death in oligodendroglial cells. J Biol Chem 284:10211–10222

    Article  PubMed  CAS  Google Scholar 

  • Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao HH, Bossis G, Urlaub H, Zweckstetter M, Kügler S, Melchior F, Bähr M, Weishaupt JH (2011) SUMOylation inhibits alpha-synuclein aggregation and toxicity. J Cell Biol 194:49–60

    Article  PubMed  CAS  Google Scholar 

  • Lamark T, Kirkin V, Dikic I, Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8:1986–1990

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–980

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Mou Y, Maric D, Klimanis D, Auh S, Hallenbeck JM (2011) Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. PLoS One 6:e25852

    Article  PubMed  CAS  Google Scholar 

  • Martin S, Wilkinson KA, Nishimune A, Henley JM (2007) Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci 8:948–959

    Article  PubMed  CAS  Google Scholar 

  • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  PubMed  CAS  Google Scholar 

  • McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8:303–308

    Article  PubMed  CAS  Google Scholar 

  • McLean PJ, Kawamata H, Hyman BT (2001) Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 104:901–912

    Article  PubMed  CAS  Google Scholar 

  • Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Norazit A, Meedeniya AC, Nguyen MN, Mackay-Sim A (2010) Progressive loss of dopaminergic neurons induced by unilateral rotenone infusion into the medial forebrain bundle. Brain Res 1360:119–129

    Article  PubMed  CAS  Google Scholar 

  • Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Löhr F, Popovic D, Occhipinti A, Reichert AS, Terzic J, Dötsch V, Ney PA, Dikic I (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51

    Article  PubMed  CAS  Google Scholar 

  • Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS (2007) Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol 178:1025–1038

    Article  PubMed  CAS  Google Scholar 

  • Olzmann JA, Li L, Chin LS (2008) Aggresome formation and neurodegenerative diseases: therapeutic implications. Curr Med Chem 15:47–60

    Article  PubMed  CAS  Google Scholar 

  • Ouyang H, Ali YO, Ravichandran M, Dong A, Qiu W, MacKenzie F, Dhe-Paganon S, Arrowsmith CH, Zhai RG (2012) Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini. J Biol Chem 287:2317–2327

    Article  PubMed  CAS  Google Scholar 

  • Pandey UB, Batlevi Y, Baehrecke EH, Taylor JP (2007) HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration. Autophagy 3:643–645

    PubMed  CAS  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  PubMed  CAS  Google Scholar 

  • Parent N, Winstall E, Beauchemin M, Paquet C, Poirier GG, Bertrand R (2009) Proteomic analysis of enriched lysosomes at early phase of camptothecin-induced apoptosis in human U-937 cells. J Proteomics 72:960–973

    Article  PubMed  CAS  Google Scholar 

  • Pountney DL, Huang Y, Burns RJ, Haan E, Thompson PD, Blumbergs PC, Gai WP (2003) SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol 184:436–446

    Article  PubMed  CAS  Google Scholar 

  • Pountney DL, Chegini F, Shen X, Blumbergs PC, Gai WP (2005) SUMO-1 marks subdomains within glial cytoplasmic inclusions of multiple system atrophy. Neurosci Lett 381:74–79

    Article  PubMed  CAS  Google Scholar 

  • Pountney DL, Raftery MJ, Chegini F, Blumbergs PC, Gai WP (2008) NSF, Unc-18-1, dynamin-1 and HSP90 are inclusion body components in neuronal intranuclear inclusion disease identified by anti-SUMO-1-immunocapture. Acta Neuropathol 116:603–614

    Article  PubMed  CAS  Google Scholar 

  • Pountney DL, Dickson TC, Power JH, Vickers JC, West AK, Gai WP (2011) Association of metallothionein-III with oligodendroglial cytoplasmic inclusions in multiple system atrophy. Neurotox Res 19:115–122

    Article  PubMed  CAS  Google Scholar 

  • Putcha P, Danzer KM, Kranich LR, Scott A, Silinski M, Mabbett S, Hicks CD, Veal JM, Steed PM, Hyman BT, McLean PJ (2010) Brain-permeable small-molecule inhibitors of Hsp90 prevent alpha-synuclein oligomer formation and rescue alpha-synuclein-induced toxicity. J Pharmacol Exp Ther 332:849–857

    Article  PubMed  CAS  Google Scholar 

  • Rami A (2009) Review: autophagy in neurodegeneration: firefighter and/or incendiarist?. Neuropathol Appl Neurobiol 35:449–461

    Article  PubMed  CAS  Google Scholar 

  • Riedel M, Goldbaum O, Wille M, Richter-Landsberg C (2011) Membrane lipid modification by docosahexaenoic acid (DHA) promotes the formation of α-synuclein inclusion bodies immunopositive for SUMO-1 in oligodendroglial cells after oxidative stress. J Mol Neurosci 43:290–302

    Article  PubMed  CAS  Google Scholar 

  • Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20:131–139. Erratum in: Dev Cell 2011 20:405–406

    Google Scholar 

  • Schwarz L, Goldbaum O, Bergmann M, Probst-Cousin S, Richter-Landsberg C (2012) Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes. J Mol Neurosci 47:256–266

    Article  PubMed  CAS  Google Scholar 

  • Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA 101:14373–14378

    Article  PubMed  CAS  Google Scholar 

  • Terui Y, Saad N, Jia S, McKeon F, Yuan J (2004) Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J Biol Chem 279:28257–28265

    Article  PubMed  CAS  Google Scholar 

  • Ulrich HD (2005) Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol 15:525–532

    Article  PubMed  CAS  Google Scholar 

  • Um JW, Chung KC (2006) Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Res 84:1543–1554

    Article  PubMed  CAS  Google Scholar 

  • Uryu K, Richter-Landsberg C, Welch W, Sun E, Goldbaum O, Norris EH, Pham CT, Yazawa I, Hilburger K, Micsenyi M, Giasson BI, Bonini NM, Lee VM, Trojanowski JQ (2006) Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies. Am J Pathol 168:947–961

    Article  PubMed  CAS  Google Scholar 

  • van Niekerk EA, Willis DE, Chang JH, Reumann K, Heise T, Twiss JL (2007) Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proc Natl Acad Sci USA 38(104):12913–12918

    Article  Google Scholar 

  • Wang P, Li B, Zhou L, Fei E, Wang G (2011) The KDEL receptor induces autophagy to promote the clearance of neurodegenerative disease-related proteins. Neuroscience 190:43–55

    Article  PubMed  CAS  Google Scholar 

  • Wenning GK, Stefanova N (2009) Recent developments in multiple system atrophy. J Neurol 256:1791–1808

    Article  PubMed  Google Scholar 

  • Wenning GK, Stefanova N, Jellinger KA, Poewe W, Schlossmacher MG (2008) Multiple system atrophy: a primary oligodendrogliopathy. Ann Neurol 64:239–246

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson KA, Nakamura Y, Henley JM (2010) Targets and consequences of protein SUMOylation in neurons. Brain Res Rev 64:195–212

    Article  PubMed  CAS  Google Scholar 

  • Williams DR, Lees AJ (2009) Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 8:270–279

    Article  PubMed  Google Scholar 

  • Yamada H, Hayashi H, Natori Y (1984) A simple procedure for the isolation of highly purified lysosomes from normal rat liver. J Biochem 95:1155–1160

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Australian Research Council, Griffith Health Institute and the Estate of the late Clem Jones AO for financial support, to P. Robinson for the gift of the anti-dynamin-1 anti-body, to R. De Silva for the gift of the anti-Tau antibody, to J. Yuan for the gift of the SUMO-1-eGFP transient transfection plasmid, to Dr. Andreas Wyttenbach for the HttQ74-eGFP transfection plasmid and to Poul Henning Jensen for the α-synuclein stable transfection plasmid. We thank Cobie Powell and Natalie Noe for assistance. Supported partially by the NHMRC 535014, 510186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean L. Pountney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, M.B., Goodwin, J., Norazit, A. et al. SUMO-1 is Associated with a Subset of Lysosomes in Glial Protein Aggregate Diseases. Neurotox Res 23, 1–21 (2013). https://doi.org/10.1007/s12640-012-9358-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9358-z

Keywords

Navigation