Skip to main content
Log in

Therapeutic Attenuation of Neuroinflammation and Apoptosis by Black Tea Theaflavin in Chronic MPTP/Probenecid Model of Parkinson’s Disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Neuroinflammation and apoptosis in the dopaminergic neurons of substantia nigra play an important role in the pathogenesis of experimental and clinical Parkinson’s disease (PD). This study focused on the possible anti-inflammatory and anti-apoptotic effects of theaflavin (TF), a black tea polyphenol against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice. C57BL/6 male mice were treated with 10 doses of MPTP (25 mg/kg, s.c.) and probenecid (250 mg/kg, i.p.) for 3.5 days interval. TF (10 mg/kg) was administered 1 h prior to the administration of MPTP for 35 days of experimental period. MPTP/p treatment upregulates the release of interleukin-1beta, IL-6, tumor necrosis factor-alpha, IL-10, glial fibrillary acidic protein and Bax, and downregulates anti-apoptotic marker Bcl-2. Oral treatment of black tea polyphenol TF significantly attenuates MPTP-induced neuroinflammation as well as apoptosis. Behavioral studies (catalepsy and akinesia) were carried out to confirm these molecular studies. The results demonstrate that TF mediated its neuroprotection against chronic MPTP-induced toxicity through the involvement of multiple molecular events. It was concluded that TF may provide a precious therapeutic strategy for the treatment of progressive neurodegenerative disease such as PD in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aloisi F (1999) The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv Exp Med Biol 468:123–133

    Article  PubMed  CAS  Google Scholar 

  • Anandhan A, Tamilselvam K, Radhika T, Rao S, Essa MM, Manivasagam T (2012) Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson’s disease. Brain Res 1433:104–113

    Article  PubMed  CAS  Google Scholar 

  • Aneja R, Odoms K, Denenberg AG, Wong HR (2004) Theaflavin, a black tea extract, is a novel anti-inflammatory compound. Crit Care Med 32:2097–2103

    Article  PubMed  CAS  Google Scholar 

  • Balentine DA, Wiseman SA, Bouwens LC (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37:693–704

    Article  PubMed  CAS  Google Scholar 

  • Barcia C, Ros CM, Annese V, Gómez A, Ros-Bernal F, Aguado-Year D, Martínez-Pagán ME, de Pablos V, Fernandez-Villalba E, Herrero MT (2011) IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis 2:e142

    Article  PubMed  CAS  Google Scholar 

  • Bartels AL, Leenders KL (2007) Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22:1852–1856

    Article  PubMed  Google Scholar 

  • Bastianetto S, Yao ZX, Papadopoulos V, Quirion R (2006) Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci 23:55–64

    Article  PubMed  Google Scholar 

  • Blum D, Torch S, Lambeng N, Nissou MF, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  PubMed  CAS  Google Scholar 

  • Blume SR, Cass DK, Tseng KY (2009) Stepping test in mice: a reliable approach in determining forelimb akinesia in MPTP-induced Parkinsonism. Exp Neurol 219:208–211

    Article  PubMed  Google Scholar 

  • Brodacki B, Staszewski J, Toczyłowsk B, Kozłowsk E, Drel N, Chalimoniuk M, Stepien A (2008) Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci Lett 441:158–162

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Kholodilov NG (1998) Programmed cell death: does it play a role in Parkinson’s disease? Ann Neurol 44:S126–S133

    Article  PubMed  CAS  Google Scholar 

  • Cai F, Li CR, Wu JL, Chen JG, Liu C, Min Q, Yu W, Ouyang CH, Chen JH (2006) Theaflavin ameliorates cerebral ischemia–reperfusion injury in rats through its anti-inflammatory effect and modulation of STAT-1. Mediators Inflamm 2006:1–9

    Article  Google Scholar 

  • Chaturvedi RK, Shukla S, Seth K, Chauhan S, Sinha C, Shukla Y, Agrawal AK (2006) Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol Dis 22:421–434

    Article  PubMed  CAS  Google Scholar 

  • Ciesielska A, Joniec I, Przybyłkowski A, Gromadzka G, Kurkowska-Jastrzebska I, Członkowska A (2003) Dynamics of expression of the mRNA for cytokines and inducible nitric synthase in a murine model of the Parkinson’s disease. Acta Neurobiol Exp 63:117–126

    Google Scholar 

  • Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, Triarhou LC, Chernet E, Perry KW, Nelson DL, Luecke S, Phebus LA, Bymaster FP, Paul SM (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98:14669–14674

    Article  PubMed  CAS  Google Scholar 

  • Feng ZH, Wang TG, Li DD, Fung P, Wilson BC, Liu B, Ali SF, Langenbach R, Hong JS (2002) Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci Lett 329:354–358

    Article  PubMed  CAS  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Develop 13:1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Kumar A, Kulkarni SK (2011) Targeting oxidative stress, mitochondrial dysfunction and neuroinflammatory signaling by selective cyclooxygenase (COX)-2 inhibitors mitigate MPTP-induced neurotoxicity in mice. Prog Neuropsychopharmacol Biol Psychiatry 35:974–981

    Article  PubMed  CAS  Google Scholar 

  • Huang MT, Liu Y, Ramji D, Lo CY, Ghai G, Dushenkov S, Ho CT (2006) Inhibitory effects of black tea theaflavin derivatives on 12-O-tetradecanoylphorbol-12-acetate-induced inflammation and arachidonic acid metabolism in mouse ears. Mol Nutr Food Res 50:115–122

    Article  PubMed  CAS  Google Scholar 

  • Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262:1274–1277

    Article  PubMed  CAS  Google Scholar 

  • Kidd PM (2000) Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern Med Rev 5:502–529

    PubMed  CAS  Google Scholar 

  • Kondo H, Park SH, Watanabe K, Yamamoto Y, Akashi M (2004) Polyphenol (−)-epigallocatechin gallate inhibits apoptosis induced by irradiation in human HaCaT keratinocytes. Biochem Biophys Res Commun 316:59–64

    Article  PubMed  CAS  Google Scholar 

  • Kurkowska-Jastrzebska I, Litwin T, Joniec I, Ciesielska A, Przybyłkowski A, Członkowski A, Członkowska A (2004) Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson’s disease. Int Immunopharmacol 4:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    Article  PubMed  CAS  Google Scholar 

  • Leung LK, Su Y, Chen R, Zhang Z, Huang Y, Chen ZY (2001) Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr 131:2248–2251

    PubMed  CAS  Google Scholar 

  • Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S (2001) Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082

    Article  PubMed  CAS  Google Scholar 

  • Liang CL, Wang TT, Luby-Phelps K, German DC (2007) Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for Parkinson’s disease. Exp Neurol 203:370–380

    Article  PubMed  CAS  Google Scholar 

  • Lin LZ, Chen P, Harnly JM (2008) New phenolic components and chromatographic profiles of green and fermented teas. J Agric Food Chem 56:8130–8140

    Article  PubMed  CAS  Google Scholar 

  • Little AR, O’Callagha JP (2001) Astrogliosis in the adult and developing CNS: is there a role for proinflammatory cytokines? Neurotoxicology 22:607–618

    Article  PubMed  CAS  Google Scholar 

  • Liu LX, Chen WF, Xie JX, Wong MS (2008) Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci Res 60:156–161

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mercer LD, Kelly BL, Horne MK, Beart PM (2005) Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol 69:339–345

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Sonsalla PK, Chesselet MF (2008) Animal models of Parkinson’s disease progression. Acta Neuropathol 115:385–398

    Article  PubMed  Google Scholar 

  • Miller NJ, Castelluccio C, Tijburg L, Rice-Evans C (1996) The antioxidant properties of theaflavins and their gallate esters: radical scavengers or metal chelators? FEBS Lett 392:40–44

    Article  PubMed  CAS  Google Scholar 

  • Mirkovic N, Voehringer DW, Story MD, McConkey DJ, McDonnell TJ, Meyn RE (1997) Resistance to radiation-induced apoptosis in Bcl-2-expressing cells is reversed by depleting cellular thiols. Oncogene 15:1461–1470

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1β, IL-2, IL-4, IL-4, IL-6 and trans forming growth factor-α levels are elevated in ventricular cerebrospinal fluid in Juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211:13–16

    Article  PubMed  CAS  Google Scholar 

  • Monahan AJ, Warren M, Carvey PM (2008) Neuroinflammation and peripheral immune infiltration in Parkinson’s disease: an autoimmune hypothesis. Cell Transplant 17:363–372

    PubMed  Google Scholar 

  • Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, Kim S, Lee D, Chung H, Oh MS, Lee KT, Park S (2009) Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox Res 15:332–347

    Article  PubMed  CAS  Google Scholar 

  • Muralikrishnan D, Mohanakumar KP (1998) Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. FASEB J 12:905–912

    PubMed  CAS  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease (Supplement). J Neural Transm 60:277–290

    Google Scholar 

  • Olanow CW, Kieburtz K, Schapira AH (2008) Why have we failed to achieve neuroprotection in Parkinson’s disease? Ann Neurol 2:S101–S110

    Google Scholar 

  • Olsson M, Nikkhah G, Bentlage C, Bjorklund A (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15:3863–3875

    PubMed  CAS  Google Scholar 

  • Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589–601

    Article  PubMed  CAS  Google Scholar 

  • Pettmann B, Henderson CE (1998) Neuronal cell death. Neuron 20:633–647

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature 387:773–776

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13:1378–1386

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo J, Fernandez AP, Serrano J, Peinado MA, Martinez A (2005) The role of free radicals in cerebral hypoxia and ischemia. Free Radic Biol Med 39:26–50

    Google Scholar 

  • Sugama S, Takenouchi T, Cho BP, Joh TH, Hashimoto M, Kitani H (2009) Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models. Inflamm Allergy Drug Targets 8:277–284

    Article  PubMed  CAS  Google Scholar 

  • Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, Vila M, Jackson-Lewis V, Przedborski S (2003) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci USA 100:5473–5478

    Article  PubMed  CAS  Google Scholar 

  • Trautwein EA, Du Y, Meynen E, Yan X, Wen Y, Wang H, Molhuizen HOF (2010) Purified black tea theaflavins and theaflavins/catechin supplements did not affect serum lipids in healthy individuals with mildly to moderately elevated cholesterol concentrations. Eur J Nutr 49:27–35

    Article  PubMed  CAS  Google Scholar 

  • Tsai S, Chao C, Yin M (2011) Preventive and therapeutic effects of caffeic acid against inflammatory injury in striatum of MPTP-treated mice. Eur J Pharmacol 670:441–447

    Article  PubMed  CAS  Google Scholar 

  • Tseng KY, Kargieman L, Gacio S, Riquelme LA, Murer MG (2005) Consequences of partial and severe dopaminergic lesion on basal ganglia oscillatory activity and akinesia. Eur J Neurosci 22:2579–2586

    Article  PubMed  Google Scholar 

  • Vermeer M, Mulder T, Molhuizen H (2008) Theaflavins from black tea, especially theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles. J Agric Food Chem 56:12031–12036

    Article  PubMed  CAS  Google Scholar 

  • Vijitruth R, Liu M, Choi DY, Nguyen XV, Hunter RL, Bing G (2006) Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflamm 3:6

    Article  Google Scholar 

  • Wang T, Qin L, Liu B, Liu Y, Wilson B, Eling TE, Langenbach R, Taniura S, Hong JS (2004a) Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 88:939–947

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhu C, Wang X, Hagberg H, Korhonen L, Sandberg M, Lindholm D, Blomgren K (2004b) X-linked inhibitor of apoptosis protein (XIAP) protects against caspase activation and tissue loss after neonatal hypoxia–ischemia. Neurobiol Dis 16:179–189

    Article  PubMed  CAS  Google Scholar 

  • Woiciechowsky C, Schöning B, Stoltenburg-Didinger G, Stockhammer F, Volk HD (2004) Brain-IL-1 beta triggers astrogliosis through induction of IL-6: inhibition by propranolol and IL-10. Med Sci Monit 10:325–330

    Google Scholar 

  • Yang C, Li D, Wan X (2008) Combination of HSCCC and Sephadex LH-20 methods. An approach to isolation and purification of the main individual theaflavins from black tea. J Chromatogr B 861:140–144

    Article  CAS  Google Scholar 

  • Zhang Y, Dawson VL, Dawson TM (2000) Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 7:240–250

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Ling Z, Newman MB, Bhatia A, Carvey PM (2007) TNF-alpha knockout and minocycline treatment attenuates blood-brain barrier leakage in MPTP-treated mice. Neurobiol Dis 26:36–46

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance in the form of a major research project from the University Grant Commission, New Delhi, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thamilarasan Manivasagam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anandhan, A., Essa, M.M. & Manivasagam, T. Therapeutic Attenuation of Neuroinflammation and Apoptosis by Black Tea Theaflavin in Chronic MPTP/Probenecid Model of Parkinson’s Disease. Neurotox Res 23, 166–173 (2013). https://doi.org/10.1007/s12640-012-9332-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9332-9

Keywords

Navigation