Skip to main content

Advertisement

Log in

Reciprocal Induction Between α-Synuclein and β-Amyloid in Adult Rat Neurons

Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In spite of definite roles for β-amyloid (Aβ) in familial Alzheimer’s disease (AD), the cause of sporadic AD remains unknown. Amyloid senile plaques and Lewy body pathology frequently coexist in neocortical and hippocampal regions of AD and Parkinson’s diseases. However, the relationship between Aβ and α-synuclein (α-Syn), the principle components in the pathological structures, in neuronal toxicity and the mechanisms of their interaction are not well studied. As Aβ and α-Syn accumulate in aging patients, the biological functions and toxicity of these polypeptides in the aging brain may be different from those in young brain. We examined the neurotoxicity influences of Aβ1-42 or α-Syn on mature neurons and the effects of Aβ1-42 or α-Syn on the production of endogenous α-Syn or Aβ1-40 reciprocally using a model of culture enriched with primary neurons from the hippocampus of adult rats. Treatment of neurons with high concentrations of Aβ1-42 or α-Syn caused significant apoptosis of neurons. Following Aβ1-42 treatment at sub apoptotic concentrations, both intra- and extra-cellular α-Syn levels were significantly increased. Reciprocally, the non-toxic levels of α-Syn treatment also increased intra- and extra-cellular Aβ1-40 levels. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, suppressed α-Syn-induced Aβ1-40 elevation, as well as Aβ1-42-induced α-Syn elevation. Thus, high concentrations of Aβ1-42 and α-Syn exert toxic effects on mature neurons; however, non-toxic concentration treatment of these polypeptides induced the production of each other reciprocally with possible involvement of PI3K pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen SJ, MacGowan SH, Treanor JJ, Feeney R, Wilcock GK, Dawbarn D (1991) Normal beta-NGF content in Alzheimer’s disease cerebral cortex and hippocampus. Neurosci Lett 131:135–139

    Article  PubMed  CAS  Google Scholar 

  • Araujo DM, Cotman CW (1992) Beta-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res 569:141–145

    Article  PubMed  CAS  Google Scholar 

  • Bowen RL, Smith MA, Harris PL, Kubat Z, Martins RN, Castellani RJ, Perry G, Atwood CS (2002) Elevated luteinizing hormone expression colocalizes with neurons vulnerable to Alzheimer’s disease pathology. J Neurosci Res 70:514–518

    Article  PubMed  CAS  Google Scholar 

  • Brewer GJ (1997) Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods 71:143–155

    Article  PubMed  CAS  Google Scholar 

  • Brewer GJ (1998) Age-related toxicity to lactate, glutamate, and beta-amyloid in cultured adult neurons. Neurobiol Aging 19:561–568

    Article  PubMed  CAS  Google Scholar 

  • Brewer GJ, Reichensperger JD, Brinton RD (2006) Prevention of age-related dysregulation of calcium dynamics by estrogen in neurons. Neurobiol Aging 27:306–317

    Article  PubMed  CAS  Google Scholar 

  • Cacabelos R, Fernandez-Novoa L, Lombardi V, Corzo L, Pichel V, Kubota Y (2003) Cerebrovascular risk factors in Alzheimer’s disease: brain hemodynamics and pharmacogenomic implications. Neurol Res 25:567–580

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Jin J, Davis J, Zhou Y, Wang Y, Liu J, Lockhart PJ, Zhang J (2007) Oligomeric alpha-synuclein inhibits tubulin polymerization. Biochem Biophys Res Commun 356:548–553

    Article  PubMed  CAS  Google Scholar 

  • Chiang HC, Wang L, Xie Z, Yau A, Zhong Y (2010) PI3 kinase signalling is involved in Abeta-induced memory loss in Drosophila. Proc Natl Acad Sci USA 107:7060–7065

    Article  PubMed  CAS  Google Scholar 

  • Christensen DD (2007) Alzheimer’s disease: progress in the development of anti-amyloid disease-modifying therapies. CNS Spectr 12(113–116):119–123

    Google Scholar 

  • Connor B, Beilharz EJ, Williams C, Synek B, Gluckman PD, Faull RL, Dragunow M (1997) Insulin-like growth factor-I (IGF-I) immunoreactivity in the Alzheimer’s disease temporal cortex and hippocampus. Brain Res Mol Brain Res 49:283–290

    Article  PubMed  CAS  Google Scholar 

  • Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, Canonico PL, Nicoletti F, Sortino MA (1999) Mitotic signalling by beta-amyloid causes neuronal death. FASEB J 13:2225–2234

    PubMed  CAS  Google Scholar 

  • Crawford JG (1996) Alzheimer’s disease risk factors as related to cerebral blood flow. Med Hypotheses 46:367–377

    Article  PubMed  CAS  Google Scholar 

  • Davis-Salinas J, Saporito-Irwin SM, Cotman CW, Van Nostrand WE (1995) Amyloid beta-protein induces its own production in cultured degenerating cerebrovascular smooth muscle cells. J Neurochem 65:931–934

    Article  PubMed  CAS  Google Scholar 

  • Donnelly RJ, Friedhoff AJ, Beer B, Blume AJ, Vitek MP (1990) Interleukin-1 stimulates the beta-amyloid precursor protein promoter. Cell Mol Neurobiol 10:485–495

    Article  PubMed  CAS  Google Scholar 

  • El-Agnaf OM, Irvine GB (2002) Aggregation and neurotoxicity of alpha-synuclein and related peptides. Biochem Soc Trans 30:559–565

    Article  PubMed  CAS  Google Scholar 

  • El-Agnaf OM, Jakes R, Curran MD, Middleton D, Ingenito R, Bianchi E, Pessi A, Neill D, Wallace A (1998) Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett 440:71–75

    Article  PubMed  CAS  Google Scholar 

  • Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M, Shearman MS, Clarke EE, Zheng H, Van Der Ploeg LH, Ruffolo SC, Thornberry NA, Xanthoudakis S, Zamboni RJ, Roy S, Nicholson DW (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic Abeta peptide formation. Cell 97:395–406

    Article  PubMed  CAS  Google Scholar 

  • Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VM (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636–640

    Article  PubMed  CAS  Google Scholar 

  • Gomperts SN, Rentz DM, Moran E, Becker JA, Locascio JJ, Klunk WE, Mathis CA, Elmaleh DR, Shoup T, Fischman AJ, Hyman BT, Growdon JH, Johnson KA (2008) Imaging amyloid deposition in Lewy body diseases. Neurology 71:903–910

    Article  PubMed  CAS  Google Scholar 

  • Heinitz K, Beck M, Schliebs R, Perez-Polo JR (2006) Toxicity mediated by soluble oligomers of beta-amyloid (1-42) on cholinergic SN56.B5.G4 cells. J Neurochem 98:1930–1945

    Article  PubMed  CAS  Google Scholar 

  • Irvine GB, El-Agnaf OM, Shankar GM, Walsh DM (2008) Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol Med 14:451–464

    Article  PubMed  CAS  Google Scholar 

  • Iwata A, Maruyama M, Kanazawa I, Nukina N (2001) Alpha-synuclein affects the MAPK pathway and accelerates cell death. J Biol Chem 276:45320–45329

    Article  PubMed  CAS  Google Scholar 

  • Kalivendi SV, Cunningham S, Kotamraju S, Joseph J, Hillard CJ, Kalyanaraman B (2004) Alpha-synuclein up-regulation and aggregation during MPP+-induced apoptosis in neuroblastoma cells: intermediacy of transferrin receptor iron and hydrogen peroxide. J Biol Chem 279:15240–15247

    Article  PubMed  CAS  Google Scholar 

  • Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP processing and synaptic function. Neuron 37:925–937

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto EM, Lepsch LB, Boaventura MF (2008) Amyloid beta-peptide activates nuclear factor-kappaB through an N-methyl-d-aspartate signalling pathway in cultured cerebellar cells. J Neurosci Res 86:845–860

    Article  PubMed  CAS  Google Scholar 

  • Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B, Dotti CG (2000) Brain plasmin enhances APP alpha-cleavage and Abeta degradation and is reduced in Alzheimer’s disease brains. EMBO Rep 1:530–535

    PubMed  CAS  Google Scholar 

  • Lee RK, Knapp S, Wurtman RJ (1999) Prostaglandin E2 stimulates amyloid precursor protein gene expression: inhibition by immunosuppressants. J Neurosci 19:940–947

    PubMed  CAS  Google Scholar 

  • Lee VM, Giasson BI, Trojanowski JQ (2004) More than just two peas in a pod: common amyloidogenic properties of tau and alpha-synuclein in neurodegenerative diseases. Trends Neurosci 27:129–134

    Article  PubMed  CAS  Google Scholar 

  • Lesné S, Ali C, Gabriel C, Croci N, MacKenzie ET, Glabe CG, Plotkine M, Marchand-Verrecchia C, Vivien D, Buisson A (2005) NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J Neurosci 25:9367–9377

    Article  PubMed  Google Scholar 

  • Luo Y, Sunderland T, Wolozin B (1996) Physiologic levels of beta-amyloid activate phosphatidylinositol 3-kinase with the involvement of tyrosine phosphorylation. J Neurochem 67:978–987

    Article  PubMed  CAS  Google Scholar 

  • Majd S, Rastegar K, Zarifkar A, Takhshid MA (2007) Fibrillar beta-amyloid (Abeta) (1-42) elevates extracellular Abeta in cultured hippocampal neurons of adult rats. Brain Res 1185:321–327

    Article  PubMed  CAS  Google Scholar 

  • Majd S, Smardencas A, Parish CL, Drago J (2011) Development of an in vitro model to evaluate the regenerative capacity of adult brain-derived tyrosine hydroxylase-expressing dopaminergic neurons. Neurochem Res 36:967–977

    Article  PubMed  CAS  Google Scholar 

  • Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA (2003) Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 23:3095–3099

    PubMed  CAS  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L (2001) Beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci USA 98:12245–12250

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z (2005) The last neuronal division: a unifying hypothesis for the pathogenesis of Alzheimer’s disease. J Cell Mol Med 9:531–541

    Article  PubMed  CAS  Google Scholar 

  • Ni Y, Zhao X, Bao G, Zou L, Teng L, Wang Z, Song M, Xiong J, Bai Y, Pei G (2006) Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nat Med 12:1390–1396

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Wakabayashi M, Ikeda K, Matsuzaki K (2007) Formation of toxic fibrils of Alzheimer’s amyloid beta-protein-(1–40) by monosialoganglioside GM1, a neuronal membrane component. J Mol Biol 371:481–489

    Article  PubMed  CAS  Google Scholar 

  • Oláh J, Vincze O, Virók D, Simon D, Bozsó Z, Tõkési N, Horváth I, Hlavanda E, Kovács J, Magyar A, Szũcs M, Orosz F, Penke B, Ovádi J (2011) Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J Biol Chem 286:34088–34100

    Article  PubMed  Google Scholar 

  • Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, Hyman BT, McLean PJ (2008) Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS 3:1–9

    Google Scholar 

  • Paleologou KE, Kragh CL, Mann DM, Salem SA, Al-Shami R, Allsop D, Hassan AH, Jensen PH, El-Agnaf OM (2009) Detection of elevated levels of soluble alpha-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain 132:1093–1101

    Article  PubMed  Google Scholar 

  • Patel JR, Brewer GJ (2003) Age-related changes in neuronal glucose uptake in response to glutamate and beta-amyloid. J Neurosci Res 72:527–536

    Article  PubMed  CAS  Google Scholar 

  • Quon D, Catalano R, Cordell B (1990) Fibroblast growth factor induces beta-amyloid precursor mRNA in glial but not neuronal cultured cells. Biochem Biophys Res Commun 167:96–102

    Article  PubMed  CAS  Google Scholar 

  • Raghavan R, Kruijff L, Sterrenburg MD, Rogers BB, Hladik CL, White CL III (2004) Alpha-synuclein expression in the developing human brain. Pediatr Dev Pathol 7:506–516

    Article  PubMed  Google Scholar 

  • Raina AK, Zhu X, Rottkamp CA, Monteiro M, Takeda A, Smith MA (2000) Cyclin’ toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J Neurosci Res 61:128–133

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8:447–453

    Article  PubMed  CAS  Google Scholar 

  • Tamo W, Imaizumi T, Tanji K, Yoshida H, Mori F, Yoshimoto M, Takahashi H, Fukuda I, Wakabayashi K, Satoh K (2002) Expression of alpha-synuclein, the precursor of non-amyloid beta component of Alzheimer’s disease amyloid, in human cerebral blood vessels. Neurosci Lett 326:5–8

    Article  PubMed  CAS  Google Scholar 

  • Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, Shelanski ML (2000) Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci 20:1386–1392

    PubMed  CAS  Google Scholar 

  • Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286

    Article  PubMed  Google Scholar 

  • Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, Engstrom L, Pinzon-Ortiz M, Fine JS, Lee HJ, Zhang L, Higgins GA, Parker EM (2004) Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 279:12876–12882

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Varvel NH, Lamb BT, Herrup K (2006) Ectopic cell cycle events link human Alzheimer’s disease and amyloid precursor protein transgenic mouse models. J Neurosci 26:775–784

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Li X, Liu G, Han J, Zhang C, Li Y, Xu S, Liu C, Gao Y, Yang H, Uéda K, Chan P (2007) Extensive nuclear localization of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody. Neuroscience 145:539–555

    Article  PubMed  CAS  Google Scholar 

  • Ziolkowska B, Gieryk A, Bilecki W, Wawrzczak-Bargiela A, Wedzony K, Chocyk A, Danielson PE, Thomas EA, Hilbush BS, Sutcliffe JG, Przewlocki R (2005) Regulation of alpha-synuclein expression in limbic and motor brain regions of morphine-treated mice. J Neurosci 25:4996–5003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NHMRC grants to Xin-Fu Zhou (595937) and Weiping Gai (535014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohreh Majd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majd, S., Chegini, F., Chataway, T. et al. Reciprocal Induction Between α-Synuclein and β-Amyloid in Adult Rat Neurons. Neurotox Res 23, 69–78 (2013). https://doi.org/10.1007/s12640-012-9330-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9330-y

Keywords

Navigation