Skip to main content

Advertisement

Log in

New Strategies in Neuroprotection and Neurorepair

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

There are currently few clinical strategies in place, which provide effective neuroprotection and repair, despite an intense international effort over the past decades. One possible explanation for this is that a deeper understanding is required of how endogenous mechanisms act to confer neuroprotection. This mini-review reports the proceedings of a recent workshop “Neuroprotection and Neurorepair: New Strategies” (Iguazu Falls, Misiones, Argentina, April 11–13, 2011, Satellite Symposium of the V Neurotoxicity Society Meeting, 2011) in which four areas of active research were identified to have the potential to generate new insights into this field. Topics discussed were (i) metallothionein and other multipotent neuroprotective molecules; (ii) oxidative stress and their signal mediated pathways in neuroregeneration; (iii) neurotoxins in glial cells, and (iv) drugs of abuse with neuroprotective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69(3):1196–1203

    Article  PubMed  CAS  Google Scholar 

  • Ambjorn M, Asmussen JW, Lindstam M, Gotfryd K, Jacobsen C, Kiselyov VV, Moestrup SK, Penkowa M, Bock E, Berezin V (2008) Metallothionein and a peptide modeled after metallothionein, EmtinB, induce neuronal differentiation and survival through binding to receptors of the low-density lipoprotein receptor family. J Neurochem 104(1):21–37. doi:10.1111/j.1471-4159.2007.05036.x

    PubMed  Google Scholar 

  • Anstey KJ, Mack HA, Cherbuin N (2009) Alcohol consumption as a risk factor for dementia and cognitive decline: meta-analysis of prospective studies. Am J Geriatr Psychiatr 17(7):542–555. doi:10.1097/JGP.0b013e3181a2fd07

    Article  Google Scholar 

  • Asanuma M, Miyazaki I, Ogawa N (2003) Dopamine- or l-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 5(3):165–176

    Article  PubMed  Google Scholar 

  • Blazquez C, Chiarlone A, Sagredo O, Aguado T, Pazos MR, Resel E, Palazuelos J, Julien B, Salazar M, Borner C, Benito C, Carrasco C, Diez-Zaera M, Paoletti P, Diaz-Hernandez M, Ruiz C, Sendtner M, Lucas JJ, de Yebenes JG, Marsicano G, Monory K, Lutz B, Romero J, Alberch J, Gines S, Kraus J, Fernandez-Ruiz J, Galve-Roperh I, Guzman M (2011) Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease. Brain 134(Pt 1):119–136. doi:10.1093/brain/awq278

    Article  PubMed  Google Scholar 

  • Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11(4):301–307. doi:10.1038/nrm2873

    Article  PubMed  CAS  Google Scholar 

  • Chiueh CC, Andoh T, Lai AR, Lai E, Krishna G (2000) Neuroprotective strategies in Parkinson’s disease: protection against progressive nigral damage induced by free radicals. Neurotox Res 2(2–3):293–310

    Article  PubMed  CAS  Google Scholar 

  • Chung RS, Vickers JC, Chuah MI, West AK (2003) Metallothionein-IIA promotes initial neurite elongation and postinjury reactive neurite growth and facilitates healing after focal cortical brain injury. J Neurosci 23(8):3336–3342

    PubMed  CAS  Google Scholar 

  • Chung RS, Leung YK, Butler CW, Chen Y, Eaton ED, Pankhurst MW, West AK, Guillemin GJ (2009) Metallothionein treatment attenuates microglial activation and expression of neurotoxic quinolinic acid following traumatic brain injury. Neurotox Res 15(4):381–389. doi:10.1007/s12640-009-9044-y

    Article  PubMed  CAS  Google Scholar 

  • Chung RS, Howells C, Eaton ED, Shabala L, Zovo K, Palumaa P, Sillard R, Woodhouse A, Bennett WR, Ray S, Vickers JC, West AK (2010) The native copper- and zinc-binding protein metallothionein blocks copper-mediated Abeta aggregation and toxicity in rat cortical neurons. PLoS One 5(8):e12030. doi:10.1371/journal.pone.0012030

    Article  PubMed  Google Scholar 

  • Collins MA, Neafsey EJ, Wang K, Achille NJ, Mitchell RM, Sivaswamy S (2010) Moderate ethanol preconditioning of rat brain cultures engenders neuroprotection against dementia-inducing neuroinflammatory proteins: possible signaling mechanisms. Mol Neurobiol 41(2–3):420–425. doi:10.1007/s12035-010-8138-0

    Article  PubMed  CAS  Google Scholar 

  • Danielson SR, Andersen JK (2008) Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radic Biol Med 44(10):1787–1794. doi:10.1016/j.freeradbiomed.2008.03.005

    Article  PubMed  CAS  Google Scholar 

  • Del-Bel E, Padovan-Neto FE, Raisman-Vozari R, Lazzarini M (2011) Role of nitric oxide in motor control: implications for Parkinson’s disease pathophysiology and treatment. Curr Pharm Des 17(5):471–488

    Article  PubMed  CAS  Google Scholar 

  • Dexter D, Wells FR, Lees A, Agid F, Agid Y, Jenner P, Marsden C (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    Article  PubMed  CAS  Google Scholar 

  • Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14(11):1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26(5):248–254

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384(4):505–516. doi:10.1515/BC.2003.059

    Article  PubMed  CAS  Google Scholar 

  • Glass C, Saijo K, Winner B, Marchetto C, Gage F (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  PubMed  CAS  Google Scholar 

  • Good PF, Hsu A, Werner P, Perl DP, Olanow CW (1998) Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 57(4):338–342

    Article  PubMed  CAS  Google Scholar 

  • Granado N, Ares-Santos S, O’Shea E, Vicario-Abejon C, Colado MI, Moratalla R (2010) Selective vulnerability in striosomes and in the nigrostriatal dopaminergic pathway after methamphetamine administration : early loss of TH in striosomes after methamphetamine. Neurotox Res 18(1):48–58. doi:10.1007/s12640-009-9106-1

    Article  PubMed  Google Scholar 

  • Granado N, Ares-Santos S, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2011) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42(3):391–403. doi:10.1016/j.nbd.2011.01.033

    Article  PubMed  CAS  Google Scholar 

  • Granado N, Lastres-Becker I, Ares-Santos S, Oliva I, Martin E, Cuadrado A, Moratalla R (in press) NRF2 deficiency potentiates Methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia

  • Hidalgo J, Aschner M, Zatta P, Vasak M (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55(2):133–145

    Article  PubMed  CAS  Google Scholar 

  • Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15(3 Pt 1):1835–1853

    PubMed  CAS  Google Scholar 

  • Leung YK, Pankhurst M, Dunlop SA, Ray S, Dittmann J, Eaton ED, Palumaa P, Sillard R, Chuah MI, West AK, Chung RS (2010) Metallothionein induces a regenerative reactive astrocyte phenotype via JAK/STAT and RhoA signalling pathways. Exp Neurol 221(1):98–106. doi:10.1016/j.expneurol.2009.10.006

    Article  PubMed  CAS  Google Scholar 

  • Martin HL, Teismann P (2009) Glutathione–a review on its role and significance in Parkinson’s disease. FASEB J 23(10):3263–3272. doi:10.1096/fj.08-125443

    Article  PubMed  CAS  Google Scholar 

  • Martin-Moreno AM, Reigada D, Ramirez BG, Mechoulam R, Innamorato N, Cuadrado A, de Ceballos ML (2011) Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol Pharmacol 79(6):964–973. doi:10.1124/mol.111.071290

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RM, Neafsey EJ, Collins MA (2009) Essential involvement of the NMDA receptor in ethanol preconditioning-dependent neuroprotection from amyloid-betain vitro. J Neurochem 111(2):580–588. doi:10.1111/j.1471-4159.2009.06351.x

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RM, Neafsey EJ, Campbell EM, Collins MA (2011) Synaptic NMDA receptor-linked peroxiredoxin pathway is upregulated by moderate ethanol preconditioning and mimicked by cruciferous neuroprotectant, D3T. Alcohol Clin Exp Res 35:240A

    Article  Google Scholar 

  • Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, Yamaguchi S, Kim SU (2010) Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One 5(7):e11746. doi:10.1371/journal.pone.0011746

    Article  PubMed  Google Scholar 

  • Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K (2006) Microglia provide neuroprotection after ischemia. FASEB J 20(6):714–716. doi:10.1096/fj.05-4882fje

    PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi:10.1126/science.1110647

    Article  PubMed  CAS  Google Scholar 

  • Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, Sagredo O, Benito C, Romero J, Azcoitia I, Fernandez-Ruiz J, Guzman M, Galve-Roperh I (2009) Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132(Pt 11):3152–3164. doi:10.1093/brain/awp239

    Article  PubMed  Google Scholar 

  • Peters R, Peters J, Warner J, Beckett N, Bulpitt C (2008) Alcohol, dementia and cognitive decline in the elderly: a systematic review. Age Ageing 37(5):505–512. doi:10.1093/ageing/afn095

    Article  PubMed  Google Scholar 

  • Polazzi E, Monti B (2010) Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 92(3):293–315. doi:10.1016/j.pneurobio.2010.06.009

    Article  PubMed  Google Scholar 

  • Prediger RD, Aguiar AS Jr, Moreira EL, Matheus FC, Castro AA, Walz R, De Bem AF, Latini A, Tasca CI, Farina M, Raisman-Vozari R (2011) The intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a new rodent model to test palliative and neuroprotective agents for Parkinson’s disease. Curr Pharm Des 17(5):489–507

    Article  PubMed  CAS  Google Scholar 

  • Ramlochansingh C, Taylor RE, Tizabi Y (2011) Toxic effects of low alcohol and nicotine combinations in SH-SY5Y cells are apoptotically mediated. Neurotox Res. doi:10.1007/s12640-011-9239-x

  • Rock RB, Peterson PK (2006) Microglia as a pharmacological target in infectious and inflammatory diseases of the brain. J Neuroimmune Pharmacol 1(2):117–126

    Article  PubMed  Google Scholar 

  • Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61(5):1672–1676

    Article  PubMed  CAS  Google Scholar 

  • Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Nunez MT, Garrick MD, Raisman-Vozari R, Hirsch EC (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 105(47):18578–18583. doi:10.1073/pnas.0804373105

    Article  PubMed  CAS  Google Scholar 

  • Salemi J, Obregon DF, Cobb A, Reed S, Sadic E, Jin J, Fernandez F, Tan J, Giunta B (2011) Flipping the switches: CD40 and CD45 modulation of microglial activation states in HIV associated dementia (HAD). Mol Neurodegener 6(1):3. doi:10.1186/1750-1326-6-3

    Article  PubMed  CAS  Google Scholar 

  • Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71(1):35–48. doi:10.1016/j.neuron.2011.06.031

    Article  PubMed  CAS  Google Scholar 

  • Sivaswamy S, Neafsey EJ, Collins MA, Sivaswamy S, Neafsey EJ, Collins MA (2010) Neuroprotective preconditioning of rat brain cultures with ethanol: potential transduction by PKC isoforms and focal adhesion kinase upstream of increases in effector heat shock proteins. Eur J Neurosci 32(11):1800–1812

    Article  PubMed  Google Scholar 

  • Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89(22):10955–10959

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29(9):506–510. doi:10.1016/j.tins.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  • Tourino C, Zimmer A, Valverde O (2010) THC prevents MDMA neurotoxicity in mice. PLoS One 5(2):e9143. doi:10.1371/journal.pone.0009143

    Article  PubMed  Google Scholar 

  • von Bernhardi R, Tichauer JE, Eugenin J (2010) Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J Neurochem 112(5):1099–1114. doi:10.1111/j.1471-4159.2009.06537.x

    Article  Google Scholar 

  • West AK, Chuah MI, Vickers JC, Chung RS (2004) Protective role of metallothioneins in the injured mammalian brain. Rev Neurosci 15(3):157–166

    Article  PubMed  CAS  Google Scholar 

  • Yenari MA, Kauppinen TM, Swanson RA (2010) Microglial activation in stroke: therapeutic targets. Neurotherapeutics 7(4):378–391. doi:10.1016/j.nurt.2010.07.005

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Knecht DA, Lynes MA (2005) Metallothionein mediates leukocyte chemotaxis. BMC Immunol 6:21. doi:10.1186/1471-2172-6-21

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

AKW and GJG acknowledge the support of NH&MRC, MA acknowledges the support of NIH R01 ES07331 and R01 ES10563. YT acknowledges the support of NIH/NIGMS (2SO6GM08016-39). RM acknowledges the support by Grants PI071073 and PNSD from the Spanish MSPS and BFU2010-20664 from the Spanish MICINN. MAC acknowledges support from NIH RO1 AA013568 and T32 AA013527. The workshop “Neuroprotection and Neurorepair: New Strategies” (Iguazu Falls, Misiones, Argentina, April 11–13, 2011) was partially supported by CONICET-Argentina (3715/10) and ANPCYT-Argentina (RC-290/10). The authors wish to thank Mrs. Susana Buglione for excellent bibliographic management.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta C. Antonelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonelli, M.C., Guillemin, G.J., Raisman-Vozari, R. et al. New Strategies in Neuroprotection and Neurorepair. Neurotox Res 21, 49–56 (2012). https://doi.org/10.1007/s12640-011-9265-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9265-8

Keywords

Navigation