Skip to main content

Advertisement

Log in

Effect of Aspartame on Oxidative Stress and Monoamine Neurotransmitter Levels in Lipopolysaccharide-Treated Mice

Neurotoxicity Research Aims and scope Submit manuscript

Abstract

This study aimed at investigating the effect of the sweetener aspartame on oxidative stress and brain monoamines in normal circumstances and after intraperitoneal (i.p.) administration of lipopolysaccharide (LPS; 100 μg/kg) in mice. Aspartame (0.625–45 mg/kg) was given via subcutaneous route at the time of endotoxin administration. Mice were euthanized 4 h later. Reduced glutathione (GSH), lipid peroxidation (thiobarbituric acid-reactive substances; TBARS), and nitrite concentrations were measured in brain and liver. Tumor necrosis factor-alpha (TNF-α) and glucose were determined in brain. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were measured in liver. The administration of only aspartame (22.5 and 45 mg/kg) increased brain TBARS by 17.7–32.8%, decreased GSH by 25.6–31.6%, and increased TNF-α by 16.7–44%. Aspartame caused dose-dependent inhibition of brain serotonin, noradrenaline, and dopamine. Aspartame did not alter liver TBARS, nitrite, GSH, AST, ALT, or ALP. The administration of LPS increased nitrite in brain and liver by 26.8 and 37.1%, respectively; decreased GSH in brain and liver by 21.6 and 31.1%, respectively; increased brain TNF-α by 340.4%, and glucose by 39.9%, and caused marked increase in brain monoamines. LPS increased AST, ALT, and ALP in liver tissue by 84.4, 173.7, and 258.9%, respectively. Aspartame given to LPS-treated mice at 11.25 and 22.5 mg/kg increased brain TBARS by 15.5–16.9%, nitrite by 12.6–20.1%, and mitigated the increase in monoamines. Aspartame did not alter liver TBARS, nitrite, GSH, ALT, AST, or ALP. Thus, the administration of aspartame alone or in the presence of mild systemic inflammatory response increases oxidative stress and inflammation in the brain, but not in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel Salam OME, Sleem AA, Shaffie NM (2009) Hepatoprotective effects of citric acid and aspartame on carbon tetrachloride-induced hepatic damage in rats. EXCLI J 8:41–49

    Google Scholar 

  • Belfield A, Goldberg DM (1971) Human serum glucose-6 phosphatase activity: confirmation of its presence and lack of diagnostic value. Clin Chim Acta 31:81–85

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom BP, Cummings DR, Skaggs TA (2007) Aspartame decreases evoked extracellular dopamine levels in the rat brain: an in vivo voltammetry study. Neuropharmacology 53:967–974

    Article  PubMed  CAS  Google Scholar 

  • Beurel E, Jope RS (2009) Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain. J Neuroinflamm 6:9

    Article  Google Scholar 

  • Borowski T, Kokkinidis L, Merali Z, Anisman H (1998) Lipopolysaccharide, central in vivo biogenic amine variations, and anhedonia. Neuroreport 9:3797–3801

    Article  PubMed  CAS  Google Scholar 

  • Buchanan JB, Sparkman NL, Johnson RW (2010) Methamphetamine sensitization attenuates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. Brain Behav Immun 24:502–511

    Article  PubMed  CAS  Google Scholar 

  • Butchko HH, Stargel WW, Comer CP et al (2002) Aspartame: review of safety. Regul Toxicol Pharmacol 35:S1–S93

    Article  PubMed  Google Scholar 

  • Butterfield DA (2002) Amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122:945–962

    Article  PubMed  CAS  Google Scholar 

  • Buttini M, Mir A, Appel K et al (1997) Lipopolysaccharide induces expression of tumour necrosis factor alpha in rat brain: inhibition by methylprednisolone and by rolipram. Br J Pharmacol 122:1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Boyd-Kimball D, Scapagnini G et al (2004) Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo 18:245–267

    PubMed  CAS  Google Scholar 

  • Cao C, Matsumura K, Yamagata K et al (1995) Induction by lipopolysaccharide of cyclooxygenase-2 mRNA in rat brain; its possible role in the febrile response. Brain Res 697:187–196

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Inoue M, Okada A (1996) Expression of inducible nitric oxide synthase mRNA in rat digestive tissues after endotoxin and its role in intestinal mucosal injury. Biochem Biophys Res Commun 224:703–708

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Jin W, Cook M et al (1998) Oral delivery of group a streptococcal cell walls augments circulating TGF-beta and suppresses streptococcal cell wall arthritis. J Immunol 161:6297–6304

    PubMed  CAS  Google Scholar 

  • Collins AR (2005) Assays for oxidative stress and antioxidant status: applications to research into the biological effectiveness of polyphenols. Am J Clin Nutr 81(suppl):261S–267S

    PubMed  CAS  Google Scholar 

  • Coulombe RA Jr, Sharma RP (1986) Neurobiochemical alterations induced by the artificial sweetener aspartame (NutraSweet). Toxicol Appl Pharmacol 83:79–85

    Article  PubMed  CAS  Google Scholar 

  • Cunningham C, Wilcockson DC, Campion S et al (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25:9275–9284

    Article  PubMed  CAS  Google Scholar 

  • Czapski GA, Cakala M, Chalimoniuk M et al (2007) Role of nitric oxide in the brain during lipopolysaccharide-evoked systemic inflammation. J Neurosci Res 85:1694–1703

    Article  PubMed  CAS  Google Scholar 

  • Dailey JW, Lasley SM, Burger RL et al (1991) Amino acids, monoamines and audiogenic seizures in genetically epilepsy-prone rats: effects of aspartame. Epilepsy Res 8:122–133

    Article  PubMed  CAS  Google Scholar 

  • Dunn AJ (1992) Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. J Pharmacol Exp Ther 261:964–969

    PubMed  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Fiorucci S, Mencarelli A, Meneguzzi A et al (2002) NCX-4016 (NO-Aspirin) inhibits lipopolysaccharide-induced tissue factor expression in vivo. Role of nitric oxide. Circulation 106:3120–3125

    Article  PubMed  Google Scholar 

  • Gibbons SS (2000) Antidepressants. In: Edmunds MW, Mayhew MS (eds) Pharmacology for the primary care provider. Mosby Inc., St. Louis, pp 602–620

    Google Scholar 

  • Goerss AL, Wagner GC, Hill WL (2000) Acute effects of aspartame on aggression and neurochemistry of rats. Life Sci 67:1325–1329

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1996) Free radicals, protein and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 24:1023–1027

    PubMed  CAS  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  • Holder MD, Yirmiya R (1989) Behavioral assessment of the toxicity of aspartame. Pharmacol Biochem Behav 32:17–26

    Article  PubMed  CAS  Google Scholar 

  • Hollis JH, Lemus M, Evetts MJ et al (2010) Central interleukin-10 attenuates lipopolysaccharide-induced changes in food intake, energy expenditure and hypothalamic Fos expression. Neuropharmacology 58:730–738

    Article  PubMed  CAS  Google Scholar 

  • Jacewicz M, Czapski GA, Katkowska I et al (2009) Systemic administration of lipopolysaccharide impairs glutathione redox state and object recognition in male mice. The effect of PARP-1 inhibitor. Folia Neuropathol 47:321–328

    PubMed  CAS  Google Scholar 

  • Jeong H-K, Jou I, Joe E-h (2010) Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Exp Mol Med 42:823–832

    Article  PubMed  CAS  Google Scholar 

  • Koprich JB, Reske-Nielsen C, Mithal P et al (2008) Neuroinflammation mediated by IL-1β increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflamm 5:8

    Article  Google Scholar 

  • Lee HY, Noh HJ, Gang JG et al (2002) Inducible nitric oxide synthase (iNOS) expression is increased in lipopolysaccharide (LPS)-stimulated diabetic rat glomeruli: effect of ACE inhibitor and angiotensin II receptor blocker. Yonsei Med J 43:183–192

    PubMed  CAS  Google Scholar 

  • Li L, Whiteman M, Moore PK (2009) Dexamethasone inhibits lipopolysaccharide-induced hydrogen sulphide biosynthesis in intact cells and in an animal model of endotoxic shock. J Cell Mol Med 13(8B):2684–2692

    Article  PubMed  Google Scholar 

  • Lim U, Subar AF, Mouw T et al (2006) Consumption of aspartame-containing beverages and incidence of hematopoietic and brain malignancies. Cancer Epidemiol Biomarkers Prev 15:1654–1659

    Article  PubMed  CAS  Google Scholar 

  • Maes M (2008) The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 29:287–291

    PubMed  CAS  Google Scholar 

  • Møller SE (1991) Effect of aspartame and protein, administered in phenylalanine-equivalent doses, on plasma neutral amino acids, aspartate, insulin and glucose in man. Pharmacol Toxicol 68:408–412

    Article  PubMed  Google Scholar 

  • Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97:1676–1689

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Kaneko YS, Nakashima A et al (2003) Effect of peripheral lipopolysaccharide injection on dopamine content in murine anterior olfactory nucleus. J Neural Transm 110:31–50

    PubMed  CAS  Google Scholar 

  • Moshage H, Kok B, Huizenga JR (1995) Nitrite and nitrate determination in plasma: a critical evaluation. Clin Chem 41:892–896

    PubMed  CAS  Google Scholar 

  • Noble F, Rubira E, Boulanouar M et al (2007) Acute systemic inflammation induces central mitochondrial damage and mnesic deficit in adult Swiss mice. Neurosci Lett 424:106–110

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB, Spitznagel E et al (1996) Increasing brain cancer rates: is there a link to aspartame? J Neuropathol Exp Neurol 55:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Olsson LE, Wheeler MA, Sessa WC et al (1998) Bladder instillation and intraperitoneal injection of Escherichia coli lipopolysaccharide up-regulate cytokines and iNOS in rat urinary bladder. JPET 284:1203–1208

    CAS  Google Scholar 

  • Opperman JA (1984) Aspartame metabolism in animals. In: Stegink LD, Filer LJ Jr (eds) Aspartame: physiology and biochemistry. Marcel Dekker, New York

    Google Scholar 

  • Ota A, Kaneko YS, Mori K et al (2007) Effect of peripherally administered lipopolysaccharide (LPS) on GTP cyclohydrolase I, tetrahydrobiopterin and norepinephrine in the locus coeruleus in mice. Stress 10:131–136

    Article  PubMed  CAS  Google Scholar 

  • Paget GE, Barnes JM (1964) Toxicity tests. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities pharmacometics. Academic Press, London and New York

    Google Scholar 

  • Perego C, De Simoni MG, Fodritto F et al (1988) Aspartame and the rat brain monoaminergic system. Toxicol Lett 44:331–339

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Nievas BG, Madrigal JL, García-Bueno B et al (2010) Corticosterone basal levels and vulnerability to LPS-induced neuroinflammation in the rat brain. Brain Res 1315:159–168

    Article  PubMed  Google Scholar 

  • Qin L, Wu X, Block ML et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  Google Scholar 

  • Reitman S, Frankel S (1957) The colorimetric method for determination of serum glutamic oxaloacetic transaminase and serum glutamic pyruvic transaminase. Am J Clin Pathol 28:56–63

    PubMed  CAS  Google Scholar 

  • Rothwell NJ (1997) Sixteenth Gaddum Memorial Lecture December 1996. Neuroimmune interactions: the role of cytokines. Pro-inflammatory cytokines are important mediators of inflammation and injury and are known contributors to excitotoxic damage. Br J Pharmacol 121:841–847

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Larrea MB, Leal AM, Liza M et al (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 59:383–388

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Nishio K, Yoshida Y et al (2010) Cytotoxic effect of formaldehyde with free radicals via increment of cellular reactive oxygen species. Toxicology 2–3:235–245

    Google Scholar 

  • Schulz JB, Lindenau J, Seyfried J et al (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  PubMed  CAS  Google Scholar 

  • Simintzi I, Schulpis KH, Angelogianni P et al (2007) The effect of aspartame on acetylcholinesterase activity in hippocampal homogenates of suckling rats. Pharmacol Res 56:155–159

    Article  PubMed  CAS  Google Scholar 

  • Soffritti M, Belpoggi F, Esposti DD et al (2005) Aspartame induces lymphomas and leukaemias in rats. Eur J Oncol 10:107–116

    Google Scholar 

  • Spiers PA, Sabounjian L, Reiner A et al (1998) Aspartame: neuropsychologic and neurophysiologic evaluation of acute and chronic effects. Am J Clin Nutr 68:531–537

    PubMed  CAS  Google Scholar 

  • Stegink LD (1984) Aspartame metabolism in humans: acute dosing studies. In: Stegink LD, Filer LJ Jr (eds) Aspartame: physiology and biochemistry. Marcel Dekker, New York

    Google Scholar 

  • Tabner BJ, El-Agnaf OMA, German MJ et al (2005) Protein aggregation, metals and oxidative stress in neurodegenerative diseases. Biochem Soc Trans 33:1082–1086

    Article  PubMed  CAS  Google Scholar 

  • Thompson WL, Karpus WJ, Van Eldik LJ (2008) MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflamm 5:35

    Article  Google Scholar 

  • Torii K, Mimura T, Takasaki Y et al (1985) Dietary aspartame with protein on plasma and brain amino acids, brain monoamines and behavior in rats. Physiol Behav 36:765–771

    Article  Google Scholar 

  • Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–25

    CAS  Google Scholar 

  • Trocho C, Pardo R, Rafecas I et al (1998) Formaldehyde derived from dietary aspartame binds to tissue components in vivo. Life Sci 63:337–349

    Article  PubMed  CAS  Google Scholar 

  • Tsakiris S, Giannoulia-Karantana A, Simintzi I et al (2006) The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity. Pharmacol Res 53:1–5

    Article  PubMed  CAS  Google Scholar 

  • Turrin NP, Gayle D, Ilyin SE et al (2001) Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Res Bull 54:443–453

    Article  PubMed  CAS  Google Scholar 

  • Vona-Davis L, Wearden P, Hill J et al (2002) Cardiac response to nitric oxide synthase inhibition using aminoguanidine in a rat model of endotoxemia. Shock 17:404–410

    Article  PubMed  Google Scholar 

  • Wood SJ, Yücel M, Pantelis C et al (2009) Neurobiology of schizophrenia spectrum disorders: the role of oxidative stress. Ann Acad Med Singap 38:396–401

    PubMed  Google Scholar 

  • Yokogoshi H, Wurtman RJ (1986) Acute effects of oral or parenteral aspartame on catecholamine metabolism in various regions of rat brain. J Nutr 116:356–364

    PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

The authors declare that there are no conflicts of interest relevant to the subject of their manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar M. E. Abdel-Salam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Salam, O.M.E., Salem, N.A. & Hussein, J.S. Effect of Aspartame on Oxidative Stress and Monoamine Neurotransmitter Levels in Lipopolysaccharide-Treated Mice. Neurotox Res 21, 245–255 (2012). https://doi.org/10.1007/s12640-011-9264-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9264-9

Keywords

Navigation