Skip to main content

Advertisement

Log in

Facile synthesis of multifunctional silver nanoparticles using mangrove plant Excoecaria agallocha L. for its antibacterial, antioxidant and cytotoxic effects

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

The current study describes a simple, rapid and eco-friendly method for the synthesis of silver nanoparticles (AgNPs) using Excoecaria agallocha (E. agallocha) leaf extract as stabilizer, bioreductant and capping agent. Synthesized AgNPs were characterized by UV–Visible spectroscopy (UV–Vis), X-ray diffraction (XRD), fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Generation of AgNPs was initially confirmed with the color change from yellow to dark brown which produces intense absorbance spectra at 440 nm in UV–Vis spectroscopy without any shifting of peaks. Further, XRD pattern confirms that the synthesized AgNPs was face centered cubic (fcc) crystalline in structure with an average size of 20 nm. On the other hand, FTIR spectrum reveals that the active metabolites like water soluble phenolic compounds, flavonoids, methylene groups, amides and carboxylate groups. These active biocompounds plays a vital role in the reduction of Ag+ into their nanoscale values, it also acts as a stabilizing and surface functionalization agent. FESEM micrographs of synthesized AgNPs shows spherical and hexagonal shaped well dispersed particles in the dimension ranging between 23 and 42 nm. EDAX confirms the presence of silver (Ag) as the major constituent element without any impurities; also substantiate the stability of generated AgNPs. The biomedical insights of nanoparticles (NPs) were assessed through radical scavenging and antibacterial properties. Additionally, synthesized AgNPs was also exhibits an excellent cytotoxic effect against human breast carcinoma cell lines (MCF-7). This study proves that synthesized AgNPs can be developed as a potential nano-drug formulation to combat pathogenic disease and also for the expansion of breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Aziza MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2014) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18(4):356–363. doi:10.1016/j.jscs.2013.09.011

    Article  Google Scholar 

  • Abou El-Nour KM, Eftaiha A, Al-Warthan A, Ammar RA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140. doi:10.1016/j.arabjc.2010.04.008

    Article  CAS  Google Scholar 

  • Akim AM, Tung EE, Chong PP, Hamzah MY, Dahlan KZM (2013) Nanoparticle-encapsulated tamoxifen inducing cytotoxic effect on Mcf-7 breast cancer cell lines. In: Proceedings of 4th International conference on biomedical engineering in vietnam IFMBE, vol 49, pp 226–228. (doi:10.1007/978-3-642-32183-2)

  • Anjaneyulu AS, Rao VL (2003) Seco diterpenoids from Excoecaria agallocha L. Phytochemistry 62(4):585–589. doi:10.1016/S0031-9422(02)00269-8

    Article  CAS  PubMed  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

    CAS  PubMed  Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782. doi:10.1039/b806051g

    Article  CAS  PubMed  Google Scholar 

  • Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I (2001) Antioxidant principles from Bauhinia tarapotensis. J Nat Prod 64(7):892–896. doi:10.1021/np0100845

    Article  CAS  PubMed  Google Scholar 

  • Castiglioni S, Cazzaniga A, Perrotta C, Maier JA (2015) Silver nanoparticles-induced cytotoxicity requires ERK activation in human bladder carcinoma cells. Toxicol Lett 237(3):237–243. doi:10.1016/j.toxlet.2015.06.1707

    Article  CAS  PubMed  Google Scholar 

  • Castro L, Blázquez ML, Muñoz JÁ, González FG, Ballester A (2014) Mechanism and applications of metal nanoparticles prepared by bio-mediated process. Rev Adv Scie Eng 3(3):199–216. doi:10.1166/rase.2014.1064

    Article  Google Scholar 

  • Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: formation, growth and self-organization. Langmuir 23:5296–5304. doi:10.1021/la700553d

    Article  CAS  PubMed  Google Scholar 

  • Christensen L, Vivekanandhan S, Misra M, Mohanty AK (2011) Biosynthesis of silver nanoparticles using Murraya koenigii leaf: an investigation on the effect of broth concentration in reduction mechanism and particle size. Adv Mater Lett 2(6):429–434. doi:10.5185/amlett.2011.4256

    Article  CAS  Google Scholar 

  • Deepa M, Padmaja CK (2014) Preliminary phytochemical analysis and thin layer chromatography of the extracts of Excoecaria agallocha L. Int J Pharmal Sci Res 5(10):4535–4542. doi:10.13040/IJPSR.0975-8232

    Google Scholar 

  • Dubey SP, Lahtinen M, Sillanpää M (2010) Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf A Physicochem Eng Asp 364(1–3):34–41. doi:10.1016/j.colsurfa.2010.04.023

    Article  CAS  Google Scholar 

  • Geethalakshmi R, Sarada DVL (2010) Synthesis of plant-mediated silver nanoparticles using Trianthema decandra extract and evaluation of their anti microbial activities. Int J Eng SciTech 2(5):970–975. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.5420&rep=rep1&type=pdf

  • Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S, Dhineshkumar M, Kumaraguru AK (2011) Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med 4(10):799–803. doi:10.1016/S1995-7645(11)60197-1

    Article  CAS  PubMed  Google Scholar 

  • Jayanta Kumar P, Tapan Kumar P, Sakti KR, Nabinkumar D, Hrudyanth T (2009) Phytochemical screening and Antimicrobial assessment of leaf extract of Excoecaria agallocha L. a Mangal species of Bhitarkanika, Orissa, India. Adv Nat Appl Sci 3(2):241–246

    Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G, Velayutham K, Rao KV, Karthik L, Raveendran S (2012) Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res 111(2):921–933. doi:10.1007/s00436-011-2473-6

    Article  PubMed  Google Scholar 

  • Jayaweera DMA (1980) Medicinal plants (Indigenous and exotic) used in Ceylon—Part III. The National Science Council of Sri Lanka, Colombo

    Google Scholar 

  • Karalai C, Wiriyachitra P, Opferkuch HJ, Hecker E (1994) Cryptic and free skin irritants of the daphnane and tigliane types in latex of Excoecaria agallocha. Planta Med 60:351–355

    Article  CAS  PubMed  Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochem Acta Part A Mol Biomol Spectrosc 79(3):594–598. doi:10.1016/j.saa.2011.03.040

    Article  CAS  Google Scholar 

  • Konoshima T, Konishi T, Takasaki M, Yamazoe K, Tokuda H (2001) Anti-tumor-promoting activity of the diterpene from Excoecaria agallocha. II. Biol Pharm Bull 24(12):1440–1442. doi:10.1248/bpb.24.1440

    Article  CAS  PubMed  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76(1):50–56. doi:10.1016/j.colsurfb.2009

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A (2014) Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi J Biolo Sci 21(6):605–609. doi:10.1016/j.sjbs.2014.07.004

    Article  CAS  Google Scholar 

  • Mallikarjuna K, John Sushma N, Narasimha G, Manoj L, Raju BDP (2014) Phytochemical fabrication and characterization of silver nanoparticles by using Pepper leaf broth. Arab J Chem 7(6):1099–1103. doi:10.1016/j.arabjc.2012.04.001

    Article  CAS  Google Scholar 

  • Mason C, Vivekanandhan S, Misra M, Mohanty AK (2012) Switchgrass (Panicum virgatum) extract mediated green synthesis of silver nanoparticles. World J Nano Sci Eng 2(2):47–52. doi:10.4236/wjnse.2012.22008

    Article  CAS  Google Scholar 

  • Mittal AK, Bhaumika J, Kumar S, Banerjee UC (2014) Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Coll Interface Sci 415:39–47. doi:10.1016/j.jcis.2013.10.018

    Article  CAS  Google Scholar 

  • Mohana Roopan S, Rohit Madhumitha G, Abdul Rahuman A, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. J Ind Crop Prod 43:631–696. doi:10.1016/j.indcrop.2012.08.013

    Article  Google Scholar 

  • Mostafa MHK, Eman HI, El-Baghdadyc KZ, Mohameda D (2014) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 7(6):1131–1139. doi:10.1016/j.arabjc.2013.04.007

    Article  Google Scholar 

  • Mollick MR, Dipak R, Sandeep Kumar D, Chattopadhyay S, Bhowmick B, Maity D, Mondal D, Pattanayak S, Roy S, Chakraborty M, Chattopadhyay D (2015) Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arabian J Chem. doi:10.1016/j.arabjc.2015.04.033

    Google Scholar 

  • Murali Krishna I, Bhagavanth Reddy G, Veerabhadram G, Madhusudhan A (2015) Eco-friendly green synthesis of silver nanoparticles using Salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies. App Nanosci. doi:10.1007/s13204-015-0479-6

    Google Scholar 

  • Muthuvel A, Adavallan K, Balamurugan K, Krishnakumar N (2014) Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed Prev Nutr 4(2):325–332. doi:10.1016/j.bionut.2014.03.004

    Article  Google Scholar 

  • Nagaraj B, Yong RL (2013) Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: a novel approach towards waste utilization. Mat Lett 109(15):31–33. doi:10.1016/j.matlet.2013.07.039

    Google Scholar 

  • Padmanabhan K, Ayyakkannu K (1985) Bioactive compounds from marine plants. II. Antibiotic properties of Excoecaria agallocha L. from Pichavaram mangroves. In: Bosale LJ (ed) Proceedings of national symposium of biology, utilization and conservation Mangroves. Shivaji University, Kolhapur, pp 319–321

  • Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed. 2(7):574–580. doi:10.1016/S2221-1691(12)60100-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasekar P, Priyadharshini S, Rajarajeshwari T, Shivashri C (2013) Bio-inspired synthesis of silver nanoparticles using Andrographis paniculata whole plant extract and their antimicrobial activity over pathogenic microbes. Int J Res Biomed Biotech 3(3):47–52

    Google Scholar 

  • Reddy NJ, Nagoor Vali D, Rani M, Rani SS (2014) Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. J Mater Sci Eng 34:115–122. doi:10.1016/j.msec.2013.08.039

    Article  CAS  Google Scholar 

  • Rosarin FS, Arulmozhi V, Nagarajan S, Mirunalini S (2010) Antiproliferative effect of silver nanoparticles synthesized using Amla on Hep2 cell line. Asian Pac J Trop Med 6(1):1–10. doi:10.1016/S1995-7645(12)60193-X

    Article  Google Scholar 

  • Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B: Biointerfaces 81(1):358–362. doi:10.1016/j.colsurfb.2010.07.036

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanometer Biostruct 5:427–432

    Google Scholar 

  • Singh C, Sharma V, Naik PK, Khandelwal V, Singh H (2011) Green biogenic approach for synthesis of gold and silver nanoparticles using Zingiber officinale. J Nanomater Bios 6:535–542

    Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32(1):79–84. doi:10.1007/s00449-008-0224-6

    Article  PubMed  Google Scholar 

  • Sukirtha R, Priyanka K, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, Krishnana M, Achiraman S (2012) Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and Lymphoma mice model. Proc Biochem 47(2):273–279. doi:10.1016/j.procbio.2011.11.003

    Article  CAS  Google Scholar 

  • Swamy MK, Sudipta KM, Jayanta K, Balasubramanya S (2015) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci 5(1):73–81. doi:10.1007/s13204-014-0293-6

    Article  Google Scholar 

  • Vilchis-Nestor AR, Sanchez-Mendieta V, Camacho-Lopez MA, Gomez-Espinosa RM, Camacho-Lopez MA, ArenasAlatorre J (2008) Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater Lett 62(17–18):3103–3105. doi:10.1016/j.matlet.2008.01.138

    Article  CAS  Google Scholar 

  • Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S (2012) Green synthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Proc Biochem 47:2405–2410. doi:10.1016/j.procbio.2012.09.025

    Article  CAS  Google Scholar 

  • Vivekanandhan S, Misra M, Mohanty AK (2009) Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: an investigation on different soybean varieties. J Nanosci Nanotech 9(12):6828–6833

    Article  CAS  Google Scholar 

  • Von White G II, Kerscher P, Brown RM, Morella JD, McAllister W, Dean D, Kitchens CL (2012) Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J Nanomater. doi:10.1155/2012/730746

    Google Scholar 

  • Zahir AA, Rahuman AA (2012) Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet Parasitol 187(3–4):511–520. doi:10.1016/j.vetpar.2012.02.001

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arumugam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvaneswari, R., Xavier, R.J. & Arumugam, M. Facile synthesis of multifunctional silver nanoparticles using mangrove plant Excoecaria agallocha L. for its antibacterial, antioxidant and cytotoxic effects. J Parasit Dis 41, 180–187 (2017). https://doi.org/10.1007/s12639-016-0773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-016-0773-6

Keywords

Navigation