Skip to main content
Log in

Scaling of Dopant Segregation Schottky Barrier Using Metal Strip Buried Oxide MOSFET and its Comparison with Conventional Device

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, a Schottky barrier silicon-on-insulator (SOI) MOSFET with asymmetric doping (dopant segregated) at the source/drain side and a metal strip in the BOX (Buried oxide) layer has been proposed. The asymmetric doping reduces the off-state leakage (IOFF) and improves the on-state drive current (ION) in comparison to the conventional structure. The metal strip inside the BOX improves the subthreshold swing and ION/IOFF current ratio. The simulation study of a conventional device using an image force barrier lowering model and without image force barrier lowering is presented. The channel length scaling leads to a high on-current in the conventional device. The thermionic emission and tunneling current are increased with barrier lowering and hence a high leakage current in the off-state region. Moreover, the proposed device is compared with the conventional device. The proposed device shows high ION/IOFF ratio of 107-108 at VDS = 0.1 V and Subthreshold Swing (SS) of 66 mV/dec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang T, Lou L, Lee C (2013) AJunctionless gate-all-around silicon nanowire FET of high linearity and Its Potential Applications. IEEE Electron Device Lett 34:478–480

    Article  Google Scholar 

  2. Collaert N, De Keersgieter A, Dixita A, Feraina I, Laib LS, Lenoblec D, Mercha A, Nackaerts A, Pawlakd BJ, Rooyackers R, Schulze T, Sanf KT, Song N.J, Van Dald MJH, Verheyen P, von Arnime K, Witters L, De Meyera K, Biesemans S, Jurczak M (2007) Multi-gate devices for the 32nm technology node and beyond. IEEE Solid State Device Research Conference (ESSDERC), pp 143–145

  3. Larson JM, Snyder JP (2006) Overview and status of metal S/D Schottky barrier MOSFET technology. IEEE Trans Electron Devices 53:1048–1058

    Article  CAS  Google Scholar 

  4. Lepselter MP, Sze SM (1968) SB-IGFET: an insulated-gate field effect transistor using Schottky barrier contacts for source and drain. IEEE Proc Lett 56:1400–1402

    Article  Google Scholar 

  5. Morteza F, Zahra A (2007) A comparison study of electrical characteristics of SchottkySsource drain and doped source drain double gate SOI MOSFET. International Conference: Sciences of Electronic(SETIT ), pp 1–4

  6. Calvet LE, Luebben H, Reed MA (2002) Suppression of leakage current in Schottky barrier metal–oxide–semiconductor field-effect transistors. J Appl Phys 91:757–759

    Article  CAS  Google Scholar 

  7. Calvet LE, Luebben H, Reed MA (2000) Subthreshold and scaling of PtSiSchottky barrier MOSFETs. Superlattice Microst 28:502–506

    Article  Google Scholar 

  8. Li D-Y, Lei S (2007) Schottky barrier MOSFET structure with silicide source/drain on buried metal. Chin Phys Soc 16:241–244

    CAS  Google Scholar 

  9. EmreAlptekin MC (2009) Tuning of the nickel silicide schottky barrier height on p-type silicon by indium implantation. IEEE Electron Device Lett 30:1272–1274

    Article  Google Scholar 

  10. Wong H-S, Chan L, Samudra G, Yeo Y-C (2007) Effective schottky barrier height reduction using sulfur or selenium at the nisi/n-si (100) interface for low resistance contacts. IEEE Electron Device Lett 28:1102–1104

    Article  CAS  Google Scholar 

  11. Kingon I, Maria JP, Streiffer SK (2000) Alternative dielectrics to silicon dioxide for memory and logic devices. Nat (UK) 406:1032–1038

    Article  CAS  Google Scholar 

  12. Zhu WJ, Ma T-P (2002) Current transport in metal/hafnium oxide/silicon structure. IEEE Electron Device Lett 23:97–99

    Article  CAS  Google Scholar 

  13. Rideout V, Crowell CR (1970) Effects of image force and tunneling on current transport in metal-semiconductor (schottky barrier) contacts. Solid-State Electron 13:993–1009

    Article  Google Scholar 

  14. Shannon JM (1977) Thermionic-field emission through silicon schottky barriers at room temperature. Solid-State Electron 20:869–872

    Article  CAS  Google Scholar 

  15. Zeng L, Xia Z, Du G, Kang J, Han RQ (2009) XiaoyanLiu Gate-induced image force barrier lowering in Schottky Barrier FETs. IEEE Trans Nanotechnol 8:10–15

    Article  Google Scholar 

  16. Jhaveri R, Nagavarapu V, Woo JCS (2009) Asymmetric schottky tunneling source soi mosfet design for mixed-mode applications. IEEE Trans Electron Devices 56(1):93–99

    Article  CAS  Google Scholar 

  17. Urban CJ (2010) DC and RF characterization of NiSiSchottky Barrier MOSFETs with Dopant Segregation, ForschungszentrumJülich (12) (Diss., RWTH Aachen University)

  18. Rahman M Sentaurus Device User Guide Version C-2009.12, Synopsys, Mountain View, CA, USA, 2009

  19. López-Pérez W, Simon-Olivera N, Molina-Coronell J, González-García A, González-Hernández R (2013)

  20. Palankovski V, Kaiblinger-Grujin G (1999) Selberherr Study of dopant-dependent band gap narrowing in compoundsemiconductor devices. Materials Science and Engineering:46–49

  21. Dixit P, Panwar O, Satyanarayan B, Bhattacharyya R (1995) Investigations on hydrogenated amorphous silicon films grown at high rate in a UHV plasma CVD system. Solar Energy Mater Solar Cells 37:143–157

    Article  CAS  Google Scholar 

  22. Jang M, Lee J (2002) Analysis of schottky barrier height in small contacts using a thermionic-field emission model. ETRI J 24(4):455–460

    Article  Google Scholar 

  23. Member AA, Flandre D, Member S (2012) Discrete random dopant fluctuation impact on nanoscale dopant-segregated schottky-barrier nanowires. IEEE Electron Device Lett 33:1228–2230

    Article  Google Scholar 

  24. Knoch J, Zhang M, Mantl S, Appenzeller J (2006) On the Performance of Single-Gated Ultrathin-Body SOI Schottky-Barrier MOSFETs. IEEE Trans Electron Devices 57:1669–1679

    Article  Google Scholar 

  25. Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-\(\mathcal {K}\) gate dielectric. IEEE Trans Electron Devices 54:1725–1732

  26. Sze SM (2007) Physics of semiconductor devices, 3rd edn. Wiley, Hoboken

    Google Scholar 

  27. Kumar M, Haldar S, Gupta M, Gupta RS (2014) Impact of gate material engineering (GME) on analog/RF performance of nanowire Schottky-barrier gate all around (GAA) MOSFET for low power wireless applications: 3D T-CAD simulation. Microelectron J 45:1508–1514

    Article  CAS  Google Scholar 

  28. Fossum JG, Chowdhury MM, Trivedi VP, King TJ, Choi YK, An J, Yu B (2003) Physical insights on design and modeling of nanoscale FinFETs. In: IEDM Technology Dig, pp 29.1.1–29. 1.4

  29. Bansal A (2007) Analytical subthreshold potential distribution model for gate underlap double-gate MOS transistors. In: Electron Devices (IEEE Transactions), vol 54, pp 1793–1797

  30. Zeng L, Xia Z, Du G, Kang Jx, Han RQ (2009) XiaoyanLiu Gate-induced image force barrier lowering in Schottky Barrier FETs. IEEE Trans Nanotechnol 8:10–15

    Article  Google Scholar 

  31. knoch1 J, Zhang M, Appenzeller J, Mant S (2007) Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors. Appl Phys 87:351–357

  32. Panwar O, Moore RA (1989) Low-temperature crystallization of amorphous-silicon films for the fabrication of thin-film transistors. Appl Surf Sci 36:247–256

    Article  Google Scholar 

  33. Panwar OS, Moore RA, Raza SH, gamble HS, Armstrong BM (1994) Comparative study of large grains and high-performance TFTs in low-temperature crystallized LPCVD and APCVD amorphous silicon films, thin solid films, pp 255–267

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashanth Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., WasimArif & Bhowmick, B. Scaling of Dopant Segregation Schottky Barrier Using Metal Strip Buried Oxide MOSFET and its Comparison with Conventional Device. Silicon 10, 811–820 (2018). https://doi.org/10.1007/s12633-016-9534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9534-5

Keywords

Navigation