Skip to main content
Log in

A Functional Material Based Heterojunction Diode

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, the phosphotungstic acid /p-Si diode was fabricated by a drop coating method. The fabricated diode had excellent rectifying properties. The electrical properties of the diode were investigated in the temperature range of 50-400 K. The optical band gap of the phosphotungstic acid film was determined and found to be 3.66 eV. The electrical and photoresponse properties of an Al/p-Si-phosphotungstic acid/Al photodiode were studied. The electronic parameters such as ideality factor (n), barrier height (Φ B ) and series resistance (R s ) were found to be strongly temperature dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  2. Xia J, Yanagida S (2011) Strategy to improve the performance of dye-sensitized solar cells: Interface engineering principle. Sol Energy 85(12):3143–3159

    Article  CAS  Google Scholar 

  3. Li L, et al. (2014) Comparing Electron Recombination via Interfacial Modifications in Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 6(23):20978–20984

    Article  CAS  Google Scholar 

  4. Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: A brief overview. Sol Energy 85(6):1172–1178

    Article  CAS  Google Scholar 

  5. Barbé CJ, et al. (1997) Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. J Am Ceram Soc 80(12):3157–3171

    Article  Google Scholar 

  6. Lü X, et al. (2010) Improved-Performance Dye-Sensitized Solar Cells Using Nb-Doped TiO2 Electrodes: Efficient Electron Injection and Transfer. Adv Funct Mater 20(3):509–515

    Article  Google Scholar 

  7. Sharma GD, et al. (2013) Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of zinc-porphyrin and thiocyanate-free ruthenium(ii)-terpyridine dyes and graphene modified TiO2 photoanode. RSC Adv 3(44):22412–22420

    Article  CAS  Google Scholar 

  8. Mojiri-Foroushani M, Dehghani H, Salehi-Vanani N (2013) Enhancement of dye-sensitized solar cells performances by improving electron density in conduction band of nanostructure TiO2 electrode with using a metalloporphyrin as additional dye. Electrochim Acta 92:315–322

    Article  CAS  Google Scholar 

  9. Guai GH, et al. (2012) Graphene- counter electrode to significantly reduce Pt loading and enhance charge transfer for high performance dye-sensitized solar cell. Sol Energy 86(7):2041– 2048

    Article  CAS  Google Scholar 

  10. Wu JH, et al. (2007) A Thermoplastic Gel Electrolyte for Stable Quasi-Solid-State Dye-Sensitized Solar Cells. Adv Funct Mater 17(15):2645–2652

    Article  CAS  Google Scholar 

  11. Xu J, et al. (2015) Facile synthesis and photocatalytic properties of ZnO core/ZnS-CdS solid solution shell nanorods grown vertically on reductive graphene oxide. Dalton Trans 44(20):9528– 9537

    Article  CAS  Google Scholar 

  12. Sariciftci NS (2004) Plastic photovoltaic devices. Mater Today 7(9):36–40

    Article  CAS  Google Scholar 

  13. Rhule JT, et al. (1998) Polyoxometalates in Medicine. Chem Rev 98(1):327–358

    Article  CAS  Google Scholar 

  14. Liu R, et al. (2012) Facile Synthesis of Au-Nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids: An Enzyme-Free Electrochemical Biosensor for Hydrogen Peroxide. Small 8(9):1398–1406

    Article  CAS  Google Scholar 

  15. Boukhachem A, et al. (2016) Physical investigations on perovskite LaMnO3 −sprayed thin films for spintronic applications. Mater Res Bull 74:202–211

    Article  CAS  Google Scholar 

  16. Moss TS, Burrell GJ, Ellis B (2013) Semiconductor opto-electronics, Butterworth-Heinemann

  17. Boukhachem A, et al. (2012) Structural, opto-thermal and electrical properties of ZnO:Mo sprayed thin films. Mater Sci Semicond Process 15(3):282–292

    Article  CAS  Google Scholar 

  18. Narendar Y, Messing GL (1997) Mechanisms of phase separation in gel-based synthesis of multicomponent metal oxides. Catal Today 35(3):247–268

    Article  CAS  Google Scholar 

  19. Ilican S, Caglar M, Caglar Y (2016) Structural, morphological and optical properties of indium oxide film by sol gel spin coating. Journal of Materials and Electronic Devices 1:19–23

    Google Scholar 

  20. Dere A (2016) Optical constants and dispersion energy parameters of n- type semi-insulating gallium phosphide single crystal wafer grown by liquid- encapsulated Czochralski (LEC). Journal of Materials and Electronic Devices 1:45–49

    Google Scholar 

  21. Murali KR, Vidhya VS, Jayachandran M (2007) Effect of phosphotungstic acid on the properties of pulse deposited ZnSe films. Mater Sci Semicond Process 10(4–5):155–158

    Article  CAS  Google Scholar 

  22. An Y et al. (2015) Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer. J Appl Phys 118(11):114307

    Article  Google Scholar 

  23. Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 49(2):85–87

    Article  CAS  Google Scholar 

  24. Yakuphanoglu F, et al. (2016) Novel organic doped inorganic photosensors. Microelectron Eng 160:27–33

    Article  CAS  Google Scholar 

  25. Aydin ME, Akkiliç K, Kiliçoğlu T (2006) The importance of the series resistance in calculating the characteristic parameters of the Schottky contacts. Appl Surf Sci 253(3):1304–1309

    Article  CAS  Google Scholar 

  26. Sze SM (1981) Physics of Semiconductor Devices, ed. S. Edition, John Wiley & Sons

  27. Aksoy S, Caglar Y (2014) Structural transformations of TiO2 films with deposition temperature and electrical properties of nanostructure n-TiO2/p-Si heterojunction diode. Appl Surf Sci 613:330–337

    CAS  Google Scholar 

  28. Korucu D, et al. (2012) Evaluation of lateral barrier height of inhomogeneous photolithography-fabricated Au/n-GaAs Schottky barrier diodes from 80 K to 320 K. Mater Sci Semicond Process 15(5):480–485

    Article  CAS  Google Scholar 

  29. Hussain I et al. (2013) Systematic study of interface trap and barrier inhomogeneities using I-V-T characteristics of Au/ZnO nanorods Schottky diode. J Appl Phys 113(23):234509

    Article  Google Scholar 

  30. Tecimer H, et al. (2013) Temperature dependent current-transport mechanism in Au/(Zn-doped) PVA/n-GaAs Schottky barrier diodes (SBDs). Sens Actuators, A 199:194–201

    Article  CAS  Google Scholar 

  31. Sze SM, Ng KK (2006) Physics of Semiconductor Devices. Wiley

  32. Al-Ghamdi A, Gupta RK, Al-Turki Y, El-Tantawy F, Yakuphanoglu F (2015) Efficiency enhancement and transient photocapacitance characteristics of the silicon solar cell by graphene oxide, Efficiency enhancement and transient photocapacitance characteristics of the silicon solar cell by graphene oxide. Journal of Materials and Electronic Devices 1:11–14

    Google Scholar 

  33. Nicollian EH, Goetzberger A, Lopez AD (1969) Expedient method of obtaining interface state properties from MIS conductance measurements. Solid State Electron 12(12):937–944

    Article  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 0046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yakuphanoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nasser, H.M., Mensah-Darkwa, K., Al-Senany, N. et al. A Functional Material Based Heterojunction Diode. Silicon 10, 737–746 (2018). https://doi.org/10.1007/s12633-016-9525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9525-6

Keywords

Navigation