Skip to main content
Log in

Effect of Titanium Dioxide Doping on Optical Properties of Borosilicate Photochromic Glasses

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Glasses with composition (SiO2)45(B2O3)35 \({\mathrm {(}{\text {Al}}_{\mathrm {2}}\mathrm {O}_{\mathrm {3}}\mathrm {)}}_{\mathrm {7.5}}\left ({\text {Na}}_{\mathrm {2}}\mathrm {O} \right )_{\mathrm {12.5}}\) doped with \(\left (\text {AgBr} \right )\!,\mathrm {\thinspace }\left ({\text {Cu}}_{\mathrm {2}}\mathrm {O} \right )\mathrm {~and~}\) (TiO2)x, in which, x=0, 1.1, 2.2,4.5 and 6.5 atom%, were prepared. The amorphous nature of these glass samples was established and confirmed using X-ray diffraction analysis. Densities of the prepared samples were measured and compared with theoretical ones. The absorption measurements in the infrared region of the spectrum were recorded in the wavenumber range 4000-400 cm-1. Spectral reflectance and transmittance at normal incidence of the prepared glasses were recorded with a double beam spectrophotometer in the spectral range 200-2500 nm. Analytical expressions were used to deduce the real and imaginary parts of the refractive indices. Dispersion parameters such as single oscillator energy, dispersion energy and Abbe’s number were deduced and compared. Absorption dispersion parameters such as optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter were extracted. Effects of doping with titanium dioxide (TiO2) as a transition metal on the linear and the predicted nonlinear optical parameters were investigated and discussed. Density increases with increasing TiO2 concentration, according to doping with large quantity from 1.1-6.5 atom %. Glasses prepared showed high reflectance and low transmittance in the UV region, which confirms the photochromic behavior. Indirect band gap values and direct band gap decreased from 4.64 to 1.63 eV and 3.34-1.85 eV respectively with the increase in the TiO2 doping concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uhlmann D R (1991) Optical Properties of Glass, American Society of Glass

  2. Horne D F (1971) Introduction to Optical Technology

  3. Ross D (1991). Appl Opt 30:3673

    Article  CAS  Google Scholar 

  4. Kamat P V (1993). Chem Rev 93:267

    Article  CAS  Google Scholar 

  5. Nakajimma H, Mori T, Shen Q, Yodam T (2005). Chem Phys Lett 409:81

    Article  Google Scholar 

  6. Araujo R J (1982). J Non-Cryst Solids 47:69

    Article  CAS  Google Scholar 

  7. Megla G K (1966). Appl Opt 5:6

    Article  Google Scholar 

  8. Drummond A H (1989). Chem Matter 4

  9. Araujo R J (1973). Feinwerktechn Micron 2:52

    Google Scholar 

  10. Smith G P (1967). J Mat Sci 2:139

    Article  CAS  Google Scholar 

  11. Baozhong Y (1982). J Non-Cryst Solids 52:567

    Article  Google Scholar 

  12. Araujo R J (1971). In: Brown G H (ed) Photochromism. Willy, new York

  13. Look D C, Johnson W L (1979). Appl Opt 18

  14. El-Zaiat S Y, et al. (2012). Opt Las Tech 44:1270

    Article  CAS  Google Scholar 

  15. El-Zaiat S Y (2013). Optik 124:157

    Article  CAS  Google Scholar 

  16. Nichelatti E J (2002). Opt A Pure Appl Opt 4:400

    Article  Google Scholar 

  17. Annapurna K, Buddhudu S (1991). J Solid State Chem 93:454

    Article  CAS  Google Scholar 

  18. Wemple S H, DiDomenico M (1971). Phys Rev B 3:1338

    Article  Google Scholar 

  19. Clausius R (1879). DiemechanischeU’grmetheorie 2:62

    Google Scholar 

  20. Mossotti O F (1850). Mem dimathem efisica in Modena 24(11):49

    Google Scholar 

  21. Davis E A, Mott N F (1970). Philos Mag 22:0903

    Article  CAS  Google Scholar 

  22. Tauc J, Grigorovici R, Vancu A (1966). J Phys Stst Sol 15:627

    Article  CAS  Google Scholar 

  23. El-Zaiat S Y (2014). Opt Rev 21:54

    Article  CAS  Google Scholar 

  24. Urbach F (1953). Phys Rev 92:1324

    Article  CAS  Google Scholar 

  25. Mahr M (1962). Phys Rev 125:1510

    Article  CAS  Google Scholar 

  26. Vogel E M, Weber M J, Krol D M (1991). Phys Chem Glasses 32:231

    CAS  Google Scholar 

  27. ElBatal F H, Fayad AM, Moustafa F A, Saad E A (2011). Egyption J AppSci 4:26

    Google Scholar 

  28. Dotsenko A V, Zakharov V K, Loiko V A UDC. 666.266.52:535.361

  29. Maruyama T, Shirai T (1993). Appl Phys Lett 63:611

    Article  CAS  Google Scholar 

  30. Husung R, Doremus R H (1990). J Mat Sci 5:10

    Google Scholar 

  31. Kamitsos E I, Patsis A P, Karakassides M A, Chryssikos G D (1986). J Phys Shem Glasses 90:4528

    CAS  Google Scholar 

  32. Krogh-Moe (1962). J Phys Shem Glasses 3:95

    Google Scholar 

  33. Espinoza-Beltran F J, Daz-Flores L L, Yanez-Limon J M, Morales-Hernandez J, Rodrguez-Melgarejo F, Vorobiev Y V, Gonzalez-Hernandez J (2001). Mater Res Soc Symp Proc 638 :F5

    Google Scholar 

  34. Kamitsos E I, Patsis A P, Karakassides M A, Chryssikos G D (1990). J Non-Crys Solids 126:52

    Article  CAS  Google Scholar 

  35. Julien M, Balkanski M (1989). J Mat Sci Eng B 3:307

    Article  CAS  Google Scholar 

  36. Navara G (2007). J Non-Cryst Solids:353–355

  37. Saad E A, ElBatal F H, Fayad A M, Moustafa F A (2011). Silicon 3:85–95

    Article  CAS  Google Scholar 

  38. Sallem A A, Kellner R, Grasserbaver M (1994). Glass Technol 35:135

    Google Scholar 

  39. Husung D R, Doremus H R (1990) Rensselaer Polytechnic Institute, Troy, Newyork. J Matter Res 5 (10):12180–3590

    Article  Google Scholar 

  40. Yafaev N R, Yablokov Y Y (1962). Sov Phys Solid State 4:1123

    Google Scholar 

  41. Lan Y, Lu Y, Ren Z (2013). Nano Energy 2:103

    Article  Google Scholar 

  42. Mohd Zaid M H, Matori K A, et al. (2012). Int J Mol Sci 13.6:7550–7558

    Article  Google Scholar 

  43. Shirif M A, Medhat M, El-Zaiat S Y, Fayad A M, Moustafa F A (2016) Optical properties of some photochromic glasses doped with cobalt oxide Silicon. doi:10.1007/s12633-016-9420-

  44. Morinaga K, Yoshida H, Takebe H (1994). J Am Cerm Soc 77:3113

    Article  CAS  Google Scholar 

  45. Wen H, Tanner P A (2015). J Alloys Compd 625:328–335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shirif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medhat, M., El-Zaiat, S.Y., Fayad, A.M. et al. Effect of Titanium Dioxide Doping on Optical Properties of Borosilicate Photochromic Glasses. Silicon 10, 525–536 (2018). https://doi.org/10.1007/s12633-016-9484-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9484-y

Keywords

Navigation