Skip to main content
Log in

Preparation and Characterization of a Cyclophosphamide-Core PAMAM Dendritic Montmorillonite

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Polyamidoamine modified organo-montmorillonites (OMMT) bearing flame-retardant elements were prepared through montmorillonite (MMT) and polyamidoamines with different generations. These materials turned out to be a possible use for the flame-retardency of polymers. Different generations of dendrimers, G1.0, G2.0, and G3.0, were synthesized from a cyclotriphosphazene core. Characteristics of these dendrimers were studied by Fourier transform infrared (FTIR) spectroscopy, hydrogen nuclear magnetic resonance (1H-NMR), ultraviolet (UV-Vis) spectroscopy, and intrinsic viscosity (IV). It was demonstrated that different generations of dendrimers had been well synthesized. These dendrimers were used as an organic intercalation agent to modify natural clay, Na +-MMT. Different generations of flame-retardant dendrimer modified OMMT, G1.0-OMMT, G2.0-OMMT, and G3.0-OMMT, were prepared. The interlayer spacing, thermal stability, and surface morphology of these dendritic MMTs were investigated by FTIR, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM) as well as energy dispersing spectrometry (EDS). It was seen that the thermal stability of G1.0-OMMT, G2.0-OMMT, and G3.0-OMMT was obviously improved with the increase of generations compared with that of MMT. In addition, an exfoliated structure existed in these dendrimer modified silicate layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Patro TU, Khakhar DV, Misra A (2009) Phosphonium-based Layered Silicate-Poly(ethylene terephthalate) Nanocomposites: stability, Thermal and Mechanical Properties[J]. J Appl Polym Sci 1720-1(732):113

    Google Scholar 

  2. Zheng JP, Shan JH, Fan ZM et al (2011) Preparation and Properties of Gelatin-Chitosan/Montmorillonite Drug-loaded Microspheres[J]. J Wuhan University Technol-Mater Sci 26(4):628–633

    Article  CAS  Google Scholar 

  3. Wu XJ, Yuan JZ, Yu YF et al (2009) Preparation and Characterization of Polylactide/Montmorillonite Nanocomposites[J]. J Wuhan University Technol-Mater Sci 24(4):562–565

    Article  CAS  Google Scholar 

  4. He XF, Yang J, Zhu LC et al (2006) Morphology and melt rheology of nylon 11/Clay Nanocomposites[J]. J Appl Polym Sci 102:542–549

    Article  CAS  Google Scholar 

  5. Ray SS, Okamoto M (2003) Biodegradable Polylactide and its Nanocomposites: Opening a new dimension for plastics and Composites[J]. Polym Sci 24(14):815–840

    CAS  Google Scholar 

  6. Lei SM, Guo GL, Xiong BH et al (2009) Disruption of Bacterial Cells by Photocatalysis of Montmorillonite Supported Titanium Dioxide[J]. J Wuhan University Technol-Mater Sci 24(4):557–561

    Article  CAS  Google Scholar 

  7. Wang XQ, Wang YQ, Zhao ZL et al (2011) Preparation and Characterization of Exfoliated Po-ly(ethyleneterephthalate)/Montmorillonite Nanocomposites Using Modified MMTs with Variable Content of Antimony Acetate[J]. Chin J Chem 29(6):1 278–1 284

    Article  CAS  Google Scholar 

  8. Kawabata T, Kato M, Mizugaki T et al (2003) Highly Efficient Deprotection of Acetals by Titanium Cation-exchanged Montmorillonite as a Strong Solid Acid Catalyst [J]. Chem Lett 32:648–649

    Article  CAS  Google Scholar 

  9. Ogawa M, Kuroda K, Kato C (1989) Preparation of Montmorillonite-Organic intercalation compounds by Solid-Solid Reactions[J]. Chem Lett 1659-1(662):18

    Google Scholar 

  10. Frechet J (1994) Dendrimers Functional Polymers Reactivity, Molecular Architecture, and Interfacial energy[J]. Science 263:1710

    Article  CAS  Google Scholar 

  11. Uhrich CJ, Hawker JM, Frechet SR (1992) One-pot Synthesis of Hyper Branched Polyethers[J]. Macromolecules 25(8):4583–4587

    Article  CAS  Google Scholar 

  12. Meltzer AD, Tirrell DA, Jones AA (1992) Chain Dynamics In Poly(Amido Amine) Dendrimers)-A Study of H-2 NMR Relaxation Parameters[J]. Macromolecules 25:4583

    Article  Google Scholar 

  13. Chen Z, Wang XL, Su JS, Zhuo D, Ran R (2010) Branched methyl methacrylate copolymer particles prepared by RAFT dispersion Polymerization[J]. Polym Bull 64(4):327–339

    Article  CAS  Google Scholar 

  14. Li X, Hong CY, Pan CY (2010) Preparation and Characterization of Hyperbranched Polymer Grafted Mesoporous Silica Nanoparticles via Self-condensing Atom Transfer Radical Vinyl Polymerization [J]. Polymer 51 (1):92–99

    Article  CAS  Google Scholar 

  15. Niu GP, Chen H, Wu YB (2008) Synthesis and Characterization of Hyperbranched Poly(amine-ester)/Lanthanum/Montmorillonite Nanocomposites[J]. Chem Lett 62:1743–1746

    Google Scholar 

  16. Wang JC, Sun K, Hao WL, Du YC, Pan C (2014) Structure and Properties Research on Montmorillonite Modified by Flame-retardant Dendrimer[J]. Appl Clay Sci 90:109–121

    Article  CAS  Google Scholar 

  17. Liyanage AU, Ikhuoria EU, Adenuga AA et al (2013) Synthesis and Characterization of Low-Generation Polyamidoamine (PAMAM) Dendrimer-Sodium Montmorillonite (Na-MMT) Clay Nanocomposites[J]. Inorg Chem 52(8):4603–4610

    Article  CAS  Google Scholar 

  18. Bao DM, Liu JP (2012) Progress on synthesis and application of hexachlorocyclotriphosphazene as flame retardant [J]. Mater Rev 26(3):66–69

    CAS  Google Scholar 

  19. Guan LJ (2007) Synthesis and Properties of Multifunctional Multi-level Three Polyphosphazene Nuclear Dendrimers [D] Beijing University of Chemical Technology

  20. Cui Y, Yang JH, Cui Y (2012) Synthesis and characterization of high purity dendrimer polyamide amine [J]. Chin J Org Chem 29(5):499–502

    Google Scholar 

  21. Tomalia DA, Baker H, Dewald J (1985) New class of polymers: Starburst-Dendritic Macromolecules[J]. Polym J 17(1):117

    Article  CAS  Google Scholar 

  22. Li YP, Zhao YL, Song YT (2011) Ultraviolet and fluorescence properties of PAMAM dendritic macromolecules Research[J]. Spectrosc Spectr Anal 31(2):423–425

    Google Scholar 

  23. Wang H, Wang XQ, Nie C et al (2013) Synthesis of quaternary phosphonium salts with ester functional group and its application to improve the thermal stability of modified montmorillonite [J]. Journal of Wuhan University of Technology-Mater. Science, 804–807

  24. Mansouri HR, Thomas RR, Garnier S et al (2007) Fluorinated Polyether Additives to Improve The Performance of Urea-formaldehyde Adhesives for Wood Panels[J]. J Appl Polym Sci 106(3):1683

    Article  CAS  Google Scholar 

  25. Hisham A, Essawy HA (2010) Poly(amidoamine) Dendritic Structures, Bearing Different End Groups, as Adhesion Promoters for Urea–Formaldehyde Wood Adhesive System[J]. J Appl Polym Sci 10:761–767

    Google Scholar 

  26. Mishra S, Shimpi GN, Mali AD (2013) Effect of surface modified montmorillonite on Photo-Oxidative degradation of silicone rubber composites [J]. Macromol Res 21:466–473

    Article  CAS  Google Scholar 

  27. Gámiz B (2012) Celis R hermosín MC others. Preparation and Characterization of Spermine-exchanged Montmorillonite and Interaction With The Herbicide Fluometuron [J]. Appl Clay Sci 58:8–15

    Article  Google Scholar 

  28. Agag T, Koga T, Takeichi T (2011) Studies on Thermal and Mechanical Properties of Polyimide-clay Nanocomposites [J]. Polymer 42(8):3399

    Article  Google Scholar 

  29. Phiriyawirut P, Magaraphan R, Ishida H (2011) Preparation and Characterization of Polybenzoxazine-clay Immiscible Nanocomposites [J]. Mater Technol 16(2):151

    Google Scholar 

  30. Jeong SI, Lee YM, Shin H (2008) Preparation and Characterization of Temperature -sensitive Poly(N-isopropylacrylamide)-g-poly(L-lactide-co-epsilon-caprolactone) Nanofibers[J]. Macromol Res 16:567

    Article  CAS  Google Scholar 

  31. Fatimah I, Thorikul H (2013) Preparation of Cetyltrimethylammonium Intercalated Indonesian Montmorillonite for Adsorption of Toluene[J]. Appl Clay Sci 74:115–120

    Article  CAS  Google Scholar 

  32. Khelidj N, Colin X, Audouin L et al (2006) Oxidation of Polyethylene Under Irradiation at Low Temperature and Low Dose Rate. Part II. Low temperature thermal oxidation[J]. Polym Degrad Stab 91(7):1598–1605

    Article  CAS  Google Scholar 

  33. Sookyung U, Nakason C, Thaijaroen W, Vennemann N (2014) Influence of modifying agents of organoclay on properties of nanocomposites based on natural Rubber[J]. Polym Test 33:48– 56

    Article  CAS  Google Scholar 

  34. Salahuddin N, Abo-El-Enein SA, Selim A et al (2010) Synthesis and Characterization of Polyurethane/Organo-montmorillonite Nanocomposites [J]. Appl Clay Sci 47:242–248

    Article  CAS  Google Scholar 

  35. He JA, Valluzzi R, Yang K et al (1999) Electrostatic Multilayer Deposition of a Gold–Dendrimer Nanocomposite [J]. Chem Mater 11(11):32683274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Jincheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Jincheng, W. Preparation and Characterization of a Cyclophosphamide-Core PAMAM Dendritic Montmorillonite. Silicon 10, 483–493 (2018). https://doi.org/10.1007/s12633-016-9478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9478-9

Keywords

Navigation