Skip to main content

Advertisement

Log in

Electric Susceptibility and Energy Loss Functions of Carbon-Nickel Composite Films at Different Deposition Times

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, the optical properties of carbon–nickel films deposited at different deposition times from 50 to 600 sec were investigated. The obtained data of the refractive index n can be analyzed to obtain the high–frequency dielectric constant which describes free carriers and the lattice vibration modes of dispersion. The lattice dielectric constant ε L and the plasma frequency ω p at 180 sec have maximum values 10.68 and 79.92x106 Hz, respectively. The free carrier electric susceptibility measurements in the wavelength range (300 – 1000 nm) are discussed according to the Spitzer–Fan model. It is shown that the electric susceptibility at 180 sec has a maximum value and with increasing wavelength it increases. The energy loss by the free charge carriers when traversing the bulk of the films at 180 sec has a maximum value and with increasing wavelength it decreases. The field emission scanning electronic microscopy (FESEM) images were used for estimation of particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ţălu Ş, Bramowicz M, Kulesza S, Shafiekhani A, Ghaderi A, Mashayekhi F (2015) Microstructure and Tribological Properties of FeNPs@a-C:H Films by Micromorphology Analysis and Fractal Geometry. Ind Eng Chem Res 54:8212–8218

    Article  Google Scholar 

  2. Stach S, Garczyk ż, Ţălu Ş, Solaymani S, Ghaderi A, Moradian R, Nezafat Negin B, Elahi S M, Gholamali H (2015) Stereometric Parameters of the Cu/Fe NPs Thin Films. J Phys Chem C 119:17887–17898

    Article  CAS  Google Scholar 

  3. Ţălu Ş, Stach S, Ghodselahi T, Ghaderi A, Solaymani S, Boochani A, Garczyk ż (2015) Topographic Characterization of Cu–Ni NPs @ a-C:H Films By AFM and Multifractal. Analysis. J Phys Chem B 119:5662–5670

    Article  Google Scholar 

  4. Ţălu Ş, Stach S, Solaymani S, Moradian R, Ghaderi A, Hantehzadeh M R, Elahi S M, Garczyk ż, Izadyar S (2015) Multifractal Spectra of Atomic Force Microscope Images of Cu/Fe Nanoparticles Based Films Thickness. J Electroanal Chem 749:31–41

    Article  Google Scholar 

  5. Ghodselahi T, Vesaghi M A, Shafiekhani A (2009) Study of surface plasmon resonance of Cu@Cu2O core–shell nanoparticles by Mie theory. J Phys D: Appl Phys 42(015308)

  6. Endrino JL, Escobar Galindo R, Zhang HS, Allen M, Gago R, Espinosa A, Anders A (2008) Structure and properties of silver-containing a-C(H) films deposited by plasma immersion ion implantation. Surf Coat Tech 202:3675–3682

    Article  CAS  Google Scholar 

  7. Chang YY, Wang DY, Wu WT (2002) Catalysis effect of metal doping on wear properties of diamond-like carbon films deposited by a cathodic-arc activated deposition process Thin Solid Films, vol 420

  8. Ghodselahi T, Vesaghi MA, Shafiekhani A, Ahmadi M, Panahandeh M, HeidariSaani M (2010) Metal–nonmetal transition in the copper–carbon nanocomposite films. Physica B 405:3949– 3951

  9. Zhong C, Luo J, Fang B, Wanjala B N, Njoki P N, Loukrakpam R, Yin J (2010) Nanostructured catalysts in fuel cells. Nanotechnology 21(062001)

  10. Narayan RJ (2005) Pulsed laser deposition of functionally gradient diamond like carbon–metal nanocomposites. Diamond Relat Mater 14:1319–1330

    Article  CAS  Google Scholar 

  11. Wasa K, Kitabatake M, Adachi H (2004) Thin Film Materials Technology: Sputtering of Compound Material. William Andriw Inc, United State

    Google Scholar 

  12. Fox M (2001) Optical Properties of Solids

  13. Robertson R (2002) Diamond-like amorphous carbon. Mater Sc Eng. R 37:129–281

    Article  Google Scholar 

  14. Kukiełka S, Gulbiński W, Pauleau Y, Dub SN, Grob JJ (2006) Composition, mechanical properties and friction behavior of nickel/hydrogenated amorphous carbon composite films. Surf Coat Technol 200:6258–6262

    Article  Google Scholar 

  15. Sbaï-Benchikh N, Zeinert A, Cailliérez H, Donnet C (2009) Optical properties of nickel-incorporated amorphous carbon film deposited by femtosecond pulsed laser ablation. Diamond Relat Mater 18:1085–1090

    Article  Google Scholar 

  16. Elahi SM, Dalouji V, Valedbagi S (2013) The Effect of Deposition Rate on Morphology and Structural Properties of Carbon-Nickel Composite Films. Adv Mater Sci Eng 2013:506549

    Article  Google Scholar 

  17. Elahi SM, Dalouji V, Mehrparvar D, Valedbagi S (2013) Influence of Deposition Rate on Optical Properties of RF-Magnetron Sputtered Carbon–Nickel Composite Films Deposited at Different Deposition Times. Mol Cryst Liq Cryst 587:105–112

    Article  CAS  Google Scholar 

  18. Dalouji V, Elahi SM (2014) Effect of annealing temperature on the optical loss and the optical constants of RF-magnetron sputtered carbon-nickel composite films. J Kore Phys Soci 64:857– 862

    Article  CAS  Google Scholar 

  19. Dalouji V, Elahi SM (2015) Study of Structural, Electrical and Magnetic Properties of RF-Magnetron Sputtered Carbon–Nickel Composite Films at Different Deposition Rate. J Fusion Energy 34:645–652

    Article  Google Scholar 

  20. Grigore E, El Mel A A, Granier A, Tessier PY (2012) The influence of Ni content on the characteristics of C–Ni thin films , vol 211

  21. Chen Y, Munechika K, Ginger DS (2007) Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles. Nano let 7:690–696

    Article  CAS  Google Scholar 

  22. Sakr GB, Yahia IS, Fadel M, Fouad SS, Romcevic N (2010) Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. J Alloys Comp 507:557–562

    Article  CAS  Google Scholar 

  23. Farag AM, Cavas M, Yakuphanoglu F, Amanullah FM (2011) Photoluminescence and optical properties of nanostructure Ni doped ZnO thin films prepared by sol–gel spin coating technique. J Alloys Comp 509:7900–7908

    Article  CAS  Google Scholar 

  24. Fadel M, Yahia IS, Sakr GB, Yakuphanoglu F, Shenouda SS (2012) Structure, optical spectroscopy and dispersion parameters of Z n G a 2 S e 4 thin films at different annealing temperatures. Optics Comm 285:3154–3161

    Article  CAS  Google Scholar 

  25. Kana JB, Ndjaka JM, Vignaud G, Gibaud A, Maaza M (2011) Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry. Optics Comm 284:807–812

    Article  Google Scholar 

  26. Yakuphaniglu F, Cukurovali A, Yilmaz I (2004) Determination and analysis of the dispersive optical constants of some organic thin films. Physica B 351:53–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vali Dalouji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalouji, V., Elahi, S. & Ahmadmarvili, A. Electric Susceptibility and Energy Loss Functions of Carbon-Nickel Composite Films at Different Deposition Times. Silicon 9, 717–722 (2017). https://doi.org/10.1007/s12633-016-9409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9409-9

Keywords

Navigation