Skip to main content
Log in

Enhancement of Photonic Band Gap in a Si- SiO2 Phoxonic Crystal Through a Lamb Wave

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The occurrence of a photonic band gap modulation in the periodic arrangement of a Si-SiO2 layer, in the presence of in-plane acoustic plate symmetric modes is studied. The proposed structure shows simultaneous existence of photonic band gaps in the infrared region and phononic band gaps in the GHz frequency range. Due to the presence of photonic band gaps and phononic band gaps, this arrangement is called a phoxonic crystal. The optical forbidden band shifted towards lower frequency by acoustooptic interaction. It is also found that the optical forbidden band is increased through an acoustic plate symmetric mode of submicron wavelength in the proposed Si-SiO2 structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Joannopoulos JD, Villeneuve PR, Fan S (1997) Solid State Commun 102:165–173

    Article  CAS  Google Scholar 

  2. Kushwaha MS, Halevi P, Dobrzynski L, Rouhani BD (1993) Phys Rev Lett 71:2022–2025

    Article  CAS  Google Scholar 

  3. Pendry JB, MacKinnon A (1992) Phys Rev Lett 69:2772–2775

    Article  CAS  Google Scholar 

  4. Lin SCS, Huang TJ (2011) Phys Rev B 83:174303

    Article  Google Scholar 

  5. Assouar MB, Oudich M (2011) Appl Phys Lett 99:123505

    Article  Google Scholar 

  6. Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ (2000) Nature 404:53–56

    Article  CAS  Google Scholar 

  7. Ozbay E, Michel E, Tuttle G, Biswas R, Sigalas M, Ho KM (1994) Appl Phys Lett 64:2059

    Article  CAS  Google Scholar 

  8. Brillouin L (1946) Wave propagation in periodic structures. Dover

  9. Parsons LC, Andrews GT (2009) Appl Phys Lett 95:241909

    Article  Google Scholar 

  10. Hassouani YEl, Boudouti EHEL, Rouhani BD, Aynaou H (2008) Phys Rev B 78:174306

    Article  Google Scholar 

  11. Maldovan M, Thomas EL (2006) Appl Phys B 83:595–600

    Article  CAS  Google Scholar 

  12. Sadat-Saleh S, Benchaban S, Baida FI, Bernal MP, Laude V (2009) J Appl Phys 106:074912

    Article  Google Scholar 

  13. Psarobas IE, Papanikolau N, Srefanou N, Rouhani BD, Bonello B, 277 Laude (2010) Phys Rev B 82:174303

  14. Qian XS, Li JP, Lu MH, Lu YQ, Chen YF (2009) J Appl Phys 106:043107

    Article  Google Scholar 

  15. Saito K, Nakagawa Y, Kakio S (2010) Jpn J Appl Phys 49:07HD17-1 07HD17-5

    Google Scholar 

  16. Halevi P, Avendano JAR, Cervantes JAR (2006) Phys Rev E 73:R040701

    Article  Google Scholar 

  17. Linares EG, Halevi P, Sanchez AS (2007) Solid State Commun 142:67–70

    Article  Google Scholar 

  18. Prasad S, Singh V, Singh AK (2012) Plasma Sci Technol 14:1084–1090

    Article  Google Scholar 

  19. Teyssier J, Saenko SV, Marel VD, Milinkovitch MC (2015) Nat Commun. doi:10.1038/ncomms7368

  20. He J, Rouhani BD, Sapriel J (1988) Phys Rev B 37:4086

    Article  CAS  Google Scholar 

  21. Rose JL (1999) Ultrasonic waves in solid media. Cambridge University Press

  22. Royer D, Dieulesaint E (2000) Elastic waves in solids I, free and guided propagation. Springer, Berlin

    Google Scholar 

  23. Hsu FC, Hsu JC, Huang TC, Wang CH, Chang P (2011) Appl Phys Lett 98:143505

    Article  Google Scholar 

  24. Yariv A, Yeh P (2003) Optical wave in crystals. Wiley

  25. Emery P, Devos A (2006) Appl Phys Lett 89:191904

    Article  Google Scholar 

  26. Duquesne JY, Perrin (2003) Phys Rev B 68:134205

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Kumar, S. & Singh, V. Enhancement of Photonic Band Gap in a Si- SiO2 Phoxonic Crystal Through a Lamb Wave. Silicon 9, 587–592 (2017). https://doi.org/10.1007/s12633-015-9315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9315-6

Keywords

Navigation