Skip to main content
Log in

Preliminary Evaluation of Median Lethal Concentrations of Stöber Silica Particles with Various Sizes and Surface Functionalities Towards Fibroblast Cells

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The application of silica particles in the biomedical field has experienced a great development in recent years, especially in the design of nanoparticles having homogeneous size, structure and amenable to specific grafting. In this way, it becomes possible to control the interaction of nanoparticles with cells in order to meet the requirements for desired applications. This work explores the cytotoxicity of silica particles of various sizes and surface functionality towards L929 fibroblast cells. In particular, the median lethal concentration of the different silica particles has been established. Preliminary investigations of silica nanoparticles prepared by the Stöber method with sizes ranging from 100 nm to 500 nm showed that the largest particles are less harmful for the cells. Moreover, cytotoxicity towards L929 fibroblasts was mainly observed for bare particles, whereas sulfonate-, amine- and thiol-grafted particles had less detrimental effects. This shows the key influence of particle surface curvature and chemistry on nanomaterials cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    Article  CAS  Google Scholar 

  2. Foglia ML, Alvarez GS, Catalano PN, Mebert AM, Diaz LE, Coradin T et al (2011) Recent patents on the synthesis and application of silica nanoparticles for drug delivery. Recent Patents Biotechnol 5(1):54–61

    Article  CAS  Google Scholar 

  3. Wang K, He X, Yang X, Shi H (2013) Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc Chem Res 46(7):1367–1376

    Article  CAS  Google Scholar 

  4. Ohulchanskyy TY, Roy I, Goswami LN, Chen Y, Bergey EJ, Pandey RK et al (2007) Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett 7(9):2835–2842

    Article  CAS  Google Scholar 

  5. Hu Y, Cai K, Luo Z, Jandt KD (2010) Layer-by-layer assembly of β-estradiol loaded mesoporous silica nanoparticles on titanium substrates and its implication for bone homeostasis. Adv Mater 22(37):4146–4150

    Article  CAS  Google Scholar 

  6. Desimone MF, Helary C, Rietveld IB, Bataille I, Mosser G, Giraud-Guille MM et al (2010) Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization. Acta Biomater 6(10):3998–4004

    Article  CAS  Google Scholar 

  7. Heinemann S, Coradin T, Desimone MF (2013) Bio-inspired silica-collagen materials: applications and perspectives in the medical field. Biomater Sci 1:688–702

    Article  CAS  Google Scholar 

  8. Rosenholm JM, Sahlgren C, Linden M (2010) Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges. Nanoscale 2(10):1870–1883

    Article  CAS  Google Scholar 

  9. Vallet-Regi M, Colilla M, Gonzalez B (2011) Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev 40(2):596–607

    Article  CAS  Google Scholar 

  10. Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41(9):3679–3698

    Article  CAS  Google Scholar 

  11. Ahamed M (2013) Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells. Human Exp Toxicol 32(2):186–195

    Article  CAS  Google Scholar 

  12. Shapero K, Fenaroli F, Lynch I, Cottell DC, Salvati A, Dawson KA (2011) Time and space resolved uptake study of silica nanoparticles by human cells. Mol BioSyst 7(2):371–378

    Article  CAS  Google Scholar 

  13. Quignard S, Mosser G, Boissiere M, Coradin T (2012) Long-term fate of silica nanoparticles interacting with human dermal fibroblasts. Biomaterials 33(17):4431–4442

    Article  CAS  Google Scholar 

  14. Rabolli V, Thomassen LCJ, Princen C, Napierska D, Gonzalez L, Kirsch-Volders M et al (2010) Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types. Nanotoxicology 4(3):307–318

    Article  CAS  Google Scholar 

  15. Huang X, Teng X, Chen D, Tang F, He J (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31(3):438–448

    Article  CAS  Google Scholar 

  16. Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Amer Chem Soc 132(13):4834–4842

    Article  CAS  Google Scholar 

  17. Lin YS, Abadeer N, Haynes CL (2011) Stability of small mesoporous silica nanoparticles in biological media. Chem Commun 47(1):532–534

    Article  CAS  Google Scholar 

  18. Drescher D, Orts-Gil G, Laube G, Natte K, Veh RW, Osterle W et al (2011) Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Anal Bioanal Chem 400(5):1367–1373

    Article  CAS  Google Scholar 

  19. Fede C, Selvestrel F, Compagnin C, Mognato M, Mancin F, Reddi E et al (2012) The toxicity outcome of silica nanoparticles (Ludox®) is influenced by testing techniques and treatment modalities. Anal Bioanal Chem 404(6–7):1789–1802

    Article  CAS  Google Scholar 

  20. Chang JS, Chang KLB, Hwang DF, Kong ZL (2007) In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41(6):2064–2068

    Article  CAS  Google Scholar 

  21. Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5(7):5717–5728

    Article  CAS  Google Scholar 

  22. Lin IC, Liang M, Liu TY, Jia Z, Monteiro MJ, Toth I (2012) Effect of polymer grafting density on silica nanoparticle toxicity. Bioorg Med Chem 20(23):6862–6869

    Article  CAS  Google Scholar 

  23. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

    Article  CAS  Google Scholar 

  24. Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157(5):1619–1625

    Article  CAS  Google Scholar 

  25. Eom HJ, Choi J (2009) Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol Vitro 23(7):1326–1332

    Article  CAS  Google Scholar 

  26. Shi Y, Yadav S, Wang F, Wang H (2010) Endotoxin promotes adverse effects of amorphous silica nanoparticles on lung epithelial cells in vitro. J Toxicol Environ Health - Part A: Curr Issues 73(11):748–756

    Article  CAS  Google Scholar 

  27. Stayton I, Winiarz J, Shannon K, Ma Y (2009) Study of uptake and loss of silica nanoparticles in living human lung epithelial cells at single cell level. Anal Bioanal Chem 394(6):1595–1608

    Article  CAS  Google Scholar 

  28. Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G, Ashquin M et al (2010) Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276(2):95–102

    Article  CAS  Google Scholar 

  29. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Article  Google Scholar 

  30. Badley RD, Ford WT, McEnroe FJ, Assink RA (1990) Surface modification of colloidal silica. Langmuir 6(4):792–801

    Article  CAS  Google Scholar 

  31. Wu J, Silvent J, Coradin T, Aimé C (2012) Biochemical investigation of the formation of three-dimensional networks from DNA-grafted large silica particles. Langmuir 28(4):2156–2165

    Article  Google Scholar 

  32. Aime C, Mosser G, Pembouong G, Bouteiller L, Coradin T (2012) Controlling the nano-bio interface to build collagen-silica self-assembled networks. Nanoscale 4(22):7127–7134

    Article  CAS  Google Scholar 

  33. Zhang H, Dunphy DR, Jiang X, Meng H, Sun B, Tarn D et al (2012) Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J Amer Chem Soc 134:15790–15804

    Article  CAS  Google Scholar 

  34. Kamiya H, Mitsui M, Takano H, Miyazawa S (2000) Influence of particle diameter on surface silanol structure, hydration forces, and aggregation behavior of alkoxide-derived silica particles. J Amer Ceram Soc 83(2):287–293

    Article  CAS  Google Scholar 

  35. Park YH, Kim JN, Jeong SH, Choi JE, Lee SH, Choi BH, et al. (2010) Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology 267(1–3):178–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thibaud Coradin or Martin Federico Desimone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, C.G., Álvarez, G.S., Camporotondi, D.E. et al. Preliminary Evaluation of Median Lethal Concentrations of Stöber Silica Particles with Various Sizes and Surface Functionalities Towards Fibroblast Cells. Silicon 11, 2307–2312 (2019). https://doi.org/10.1007/s12633-014-9203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9203-5

Keywords

Navigation