Skip to main content
Log in

Determination of the Boron and Phosphorus Ionization Energies in Compensated Silicon by Temperature-Dependent Luminescence

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The determination of boron and phosphorus ionization energies in compensated silicon is very important for assessing the ionization level of dopants and their interaction with each other. In this paper, we achieved the boron and phosphorus ionization energies in compensated silicon by temperature-dependent luminescence for the first time. The results show that the boron and phosphorus ionization energies in heavily-compensated silicon have the same values as those in non-compensated silicon. This strongly suggests that both boron and phosphorus impurities with a concentration of ≤ 10 17 cm −3 should act as isolated acceptors and donors, but do not form complexes in silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delannoy Y, Alemany C, Li K I, Proulx P, Trassy C (2002) Plasma-refining process to provide solar-grade silicon. Sol Energy Mater Sol Cells 72: 69–75

    Article  CAS  Google Scholar 

  2. Pires J C S, Otubo J, Braga A F B, Mei P R (2005) The purification of metallurgical grade silicon by electron beam melting. J Mater Process Technol 169: 16–20

    Article  CAS  Google Scholar 

  3. Martinuzzi S, Perichaud I, Trassy C, Degoulange J (2009) N-type multicrystalline silicon wafers prepared from plasma torch refined upgraded metallurgical feedstock. Prog Photovolt Res Appl 17: 297–305

    Article  CAS  Google Scholar 

  4. Morito H, Karahashi T, Uchikoshi M, Isshiki M, Yamane H (2012) Low-temperature purification of silicon by dissolution and solution growth in sodium solvent. Silicon 4: 121–125

    Article  CAS  Google Scholar 

  5. Wu J J, Ma W H, Yang B, Liu D C, Dai Y N (2012) Calculation and characterization of silicon-boron phases in metallurgical grade silicon. Silicon 4: 289–295

    Article  CAS  Google Scholar 

  6. Wu J J, Li Y L, Ma W H, Liu K, Wei K X, Xie K Q, Yang B, Dai YN (2013) Impurities removal from metallurgical grade silicon using gas blowing refining techniques. Silicon. http://dx.doi.org/10.1007/s12633-013-9158-y.

  7. Schutz-Kuchly T, Sanzone V, Veschetti Y (2013) N-type solar-grade silicon purified via the metallurgical route: characterisation and fabrication of solar cells. Prog Photovolt Res Appl 21: 1214–1221

    CAS  Google Scholar 

  8. Xiao C Q, Yang D R, Yu X G, Wang P, Chen P, Que D L (2012) Effect of dopant compensation on the performance of Czochralski silicon solar cells. Sol Energy Mater Sol Cells 101: 102–106

    Article  CAS  Google Scholar 

  9. Tanay F, Dubois S, Enjalbert N, Veirman J (2011) Low temperature-coefficient for solar cells processed from solar-grade silicon purified by metallurgical route. Prog Photovolt Res Appl 19: 966–972

    Article  CAS  Google Scholar 

  10. Soøiland A, Odden JO, Sandberg B, Friestad K, Håkedal J, Enebakk E, Braathen S (2012) Solar silicon from a metallurgical route by Elkem Solar – a viable alternative to virgin polysilicon. In: Proceedings of the 6th international workshop on crystalline silicon solar cells. Aix-les-bains, France

    Google Scholar 

  11. Flamant G, Kurtcuoglu V, Murray J, Steinfeld A (2006) Purification of metallurgical grade silicon by a solar process. Sol Energy Mater Sol Cells 90: 2099–2106

    Article  CAS  Google Scholar 

  12. Braga A F B, Moreira S P, Zampieri P R, Bacchin J M G, Mei P R (2007) New processes for the production of solar-grade polycrystalline silicon: a review. Sol Energy Mater Sol Cells 92: 418–424

    Article  Google Scholar 

  13. Veirman J, Dubois S, Enjalbert N, Garandet J P, Lemiti M (2011) Electrical properties of highly-doped and compensated solar-grade silicon wafers and solar cells. J Appl Phys 109(103711)

  14. Xiao C Q, Yang D R, Yu X G, Gu X, Que D L (2012) Influence of the compensation level on the performance of p-type crystalline silicon solar cells theoretical calculations and experimental study. Sol Energy Mater Sol Cells 107: 263–271

    Article  CAS  Google Scholar 

  15. Forster M, Cuevas A, Fourmond E, Rougieux F E, Lemiti M (2012) Impact of incomplete ionization of dopants on the electrical properties of compensated p-type silicon. J Appl Phys 111: 043701

    Article  Google Scholar 

  16. Altermatt P P, Schenk A, Heiser G (2006) A simulation model for the density of states and for incomplete ionization in crystalline silicon. I. Establishing the model in Si:P. J Appl Phys 100: 113714

    Article  Google Scholar 

  17. Altermatt P P, Schenk A, Schmithusen B, Heiser G (2006) A simulation model for the density of states and for incomplete ionization in crystalline silicon. II. Investigation of Si:As and Si:B and usage in device simulation. J Appl Phys 100: 113715

    Article  Google Scholar 

  18. Tajima M, Iwai T, Toyota H, Binetti S, Macdonald D (2010) Fine structure due to donor–acceptor pair luminescence in compensated Si. Appl Phys Express 3: 071301

    Article  Google Scholar 

  19. Tajima M, Iwai T, Toyota H, Binetti S, Macdonald D (2011) Donor-acceptor pair luminescence in compensated Si for solar cells. J Appl Phys 110: 043506

    Article  Google Scholar 

  20. Enck R C, Honig A (1969) Radiative Spectra from shallow donor-acceptor electron transfer in silicon. Phys Rev 177: 1182–1193

    Article  CAS  Google Scholar 

  21. Xiang L L, Li D S, Jin L, Pivac B, Yang D R (2012) The origin of 0.78 eV line of the dislocation related luminescene in silicon. J Appl Phys 112: 063528

    Article  Google Scholar 

  22. Sauer R, Weber J, Stolz J, Weber E R, Kusters K H, Alexander H (1985) Dislocation-related photoluminescence in silicon. Appl Phys A Mater Sci Process 36: 1–13

    Article  Google Scholar 

  23. Modanese C, Acciarri M, Binetti S, Søiland A, Sabatino MD, Arnberg L (2012) Temperature-dependent Hall-effect measurements of p-type multicrystalline compensated solar grade silicon. Prog Photovolt Res Appl. http://dx.doi.org/10.1002/pip.2223.

  24. Rezgui B D, Veirman J, Dubois S, Palais O (2012) Study of donor-acceptor pair luminescence in highly doped and compensated Cz silicon. Phys Status Solidi A 209: 1917–1920

    Article  CAS  Google Scholar 

  25. Sze SM (1981) Physics of semicondutor devices, 2nd edn

  26. Riklund R, Chao K A (1982) Concentration-fluctuation model of a doped semiconductor in the nonmetallic regime: Pseudocluster investigation. Phys Rev B 26: 2168–2180

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 61274057), National Key Technology R&D Program (2011BAE03B13), and Innovation Team Project of Zhejiang Province (2009R50005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuegong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C., Yang, D., Yu, X. et al. Determination of the Boron and Phosphorus Ionization Energies in Compensated Silicon by Temperature-Dependent Luminescence. Silicon 9, 147–151 (2017). https://doi.org/10.1007/s12633-014-9193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9193-3

Keywords

Navigation