Skip to main content
Log in

Inhibitive Behaviour of Zinc Gluconate on Aluminium Alloy in 3.5 % Nacl Solution

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present work investigates corrosion behaviour of aluminium alloy in 3.5 % sodium chloride medium at 28 °C in the absence and presence of 0.5, 1.0, 1.5 and 2.0 % g/v concentrations of zinc gluconate using gravimetric and electrochemical techniques. The aluminium alloy was cut to corrosion coupons, and immersed into 3.5 % sodium chloride solution containing different inhibitor concentrations (0.5, 1.0, 1.5 and 2.0 % g/v) within a period of twenty-eight days. The surface morphology of the metal was examined by high resolution scanning electron microscopy equipped with energy dispersive spectroscopy (HR-SEM/EDS). From the results, it was found that the adsorption of zinc gluconate reduced aluminium alloy corrosion in the sodium chloride medium. Experimental results also showed that inhibition efficiency increased with an increase in zinc gluconate concentration. Furthermore, potentiodynamic polarization results revealed decrease in corrosion rates (CR), corrosion current densities (Icorr), and increasing corrosion resistance (Rp) in the presence of zinc gluconate in 3.5 % NaCl solution. Tafel polarization analyses indicated that zinc gluconate is a mixed type inhibitor. The adsorption of zinc gluconate on the aluminium alloy surface followed Langmuir adsorption isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rambau TG, Popoola API, Loto CA (2013). Int J Electrochem Sci 8:5515

    CAS  Google Scholar 

  2. Candan S, Biligic E (2004). Mater Lett 58:2787

    Article  CAS  Google Scholar 

  3. Bakkar A, Neubert V (2007). Corrosion Sci 49:1110

    Article  CAS  Google Scholar 

  4. Ajayi OO, Omotosho OA, Ajanaku KO, Olawore BO (2011). Environ Res J 4:163

    Google Scholar 

  5. Kumpawat V, Garg U, Tak RK (2009). J Ind Council Chem 1:82

    Google Scholar 

  6. Rosliza R, Nora’aini A, Nik WBW (2010). J Appl Electrochem 40:833

    Article  CAS  Google Scholar 

  7. Abdulwahab M, Madugu IA, Yaro SA, Popoola API (2012). Silicon 4:137

    Article  CAS  Google Scholar 

  8. Al-Turkustani AM, Al-Solmi MM (2011). J Asian Sci Res 1:346

    Google Scholar 

  9. Halambek J, Berkovic K, Vorkapic-Furac J (2010). Corrosion Sci 52:3978

    Article  CAS  Google Scholar 

  10. Rajasekar A, Ting Y-P (2011). Ind Eng Chem Res (ACS) 4:2040

    Article  Google Scholar 

  11. Praveen BM, Arthoba TVY, Naik YA, Prashantha K (2007). Surf Coating Technol 201:5836

    Article  CAS  Google Scholar 

  12. Kim DK, Muralidharan S, Ha TH, Bae JH, Ha YC, Lee HG (2006). Electrochim Acta 51:5259

    Article  CAS  Google Scholar 

  13. Subasria R, Shinoharaa T, Morib K (2005). Sci Technol Adv Mater 6:501

    Article  Google Scholar 

  14. Cecchetto L, Delabouglise D, Petit P (2007). Electrochim Acta 52:3485

    Article  CAS  Google Scholar 

  15. Fang HC, Chen KH, Zhang Z, Zhu C (2008). Trans Nonferr Metals Soc China 18:28

    Article  CAS  Google Scholar 

  16. Li Z, Xiong B, Zhang Y, Zhu B, Wang F, Liu H (2008). Mater Charact 494:278

    Article  Google Scholar 

  17. Risanti DD, Yin M, Rivera PEJ, Vau der Zwang S (2009). Mater Sci Eng 523:99

    Article  Google Scholar 

  18. Mohammed RA, Abdulwahab M, Madugu IA, Gaminana JO, Asuke F (2013). J Mater Environ Sci 1:93

    Google Scholar 

  19. Singh A, Quraishi MA (2012). Res J Recent Sci 1:57

    CAS  Google Scholar 

  20. Kumari PD, Nayak J, Shetty N (2011). J Mater Environ Sci 4:387

    Google Scholar 

  21. Abdulwahab M, Kassim A, Bello KA, Gaminana JO (2012). Adv Mater Res 367:319

    Article  CAS  Google Scholar 

  22. Umoren SA, Ebenso EE (2008). Pigment Resin Technol 37:173

    Article  CAS  Google Scholar 

  23. Umoren SA, Obot IB, Ebenso EE, Okafor PC, Ogbode O, Oguzie EE (2009). Anti-corrosion Methods Mater 53:277

    Article  Google Scholar 

  24. Abiola OK, Otaigbe JOE, Kio OJ (2009). Corrosion Sci 51:1879

    Article  CAS  Google Scholar 

  25. Mahdavian M, Naderi R (2011). Corrosion Sci 53:1194

    Article  CAS  Google Scholar 

  26. Sanni O, Loto CA, Popoola API (2013). Res Chem Intermed J. doi:10.1007/s11164-013-1181-5

    Google Scholar 

  27. Raja PB (2009). Pigment Resin Technol 38:33

    Article  CAS  Google Scholar 

  28. Gomma GK, Wahdan MH (1994). Mater Chem Phys 2:142

    Article  Google Scholar 

  29. Singh AK, Quraishi MA (2010). J Mater Environ Sci 1:101

    Google Scholar 

  30. Mohammad I, Abdulrahman AS, Hussain MS (2011). Int J Eng Sci Technol 3:1742

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Sanni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanni, O., Loto, C.A. & Popoola, A.P.I. Inhibitive Behaviour of Zinc Gluconate on Aluminium Alloy in 3.5 % Nacl Solution. Silicon 8, 195–200 (2016). https://doi.org/10.1007/s12633-014-9180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9180-8

Keywords

Navigation