Skip to main content
Log in

Qualitative Evolution of Asymmetric Raman Line-Shape for NanoStructures

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A qualitative evolution of an asymmetric Raman line-shape function from a Lorentzian line-shape is discussed here for application in low dimensional semiconductors. The step-by-step evolution reported here is based on the phonon confinement model which is successfully used in literature to explain the asymmetric Raman line-shape from semiconductor nanostructures. Physical significance of different terms in the theoretical asymmetric Raman line-shape has been explained here. Better understanding of theoretical reasoning behind each term allows one to use the theoretical Raman line-shape without going into the details of theory from first principle. This will enable one to empirically derive a theoretical Raman line-shape function for any material if information about its phonon dispersion relation, size dependence, etc., is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Raman C (1928) A new radiation. Indian J Phys 02:387

    CAS  Google Scholar 

  2. Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502. doi:10.1038/121501c0

    Article  CAS  Google Scholar 

  3. Barbagiovanni EG, Lockwood DJ, Simpson PJ, Goncharova LV (2012) Quantum confinement in Si and Ge nanostructures. J Appl Phys 111:034307. doi:10.1063/1.3680884

    Article  Google Scholar 

  4. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107. doi:10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  5. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 64:075414. doi:10.1103/PhysRevB.64.075414

    Article  Google Scholar 

  6. Hultman L, Robertsson A, Hentzell HTG et al (1987) Crystallization of amorphous silicon during thinfilm gold reaction. J Appl Phys 62:3647–3655. doi:10.1063/1.339244

    Article  CAS  Google Scholar 

  7. Vepek S, Iqbal Z, Sarott F-A (1982) A thermodynamic criterion of the crystalline-to-amorphous transition in silicon. Philos Mag Part B 45:137–145. doi:10.1080/13642818208246392

    Article  Google Scholar 

  8. Shuker R, Gammon RWRaman-scattering selection-rule breaking and the density of states in amorphous materials. Phys Rev Lett 25:222. doi:10.1103/PhysRevLett.25.222

  9. Sahu G, Joseph B, Lenka HP, Kuiri PK, Pradhan A, Mahapatra DP (2007) MeV Au irradiation induced nanoparticle formation and recrystallization in a low energy Au implanted Si layer. Nanotechnology 18:495702. doi:10.1088/0957-4484/18/49/495702

    Article  CAS  Google Scholar 

  10. Sahu G, Mahapatra DP (2011) Raman scattering study of Si nanoclusters formed in Si through a double Au implantation. MRS Proceedings Spring Meeting 1354. doi:10.1557/opl.2011.1212

  11. Sahu G, Kumar R, Mahapatra DP (2013) Raman Scattering and Backscattering Studies of Silicon Nanocrystals Formed Using Sequential Ion Implantation. Silicon 6:65. doi:10.1007/s12633-013-9157-z

  12. Sahu G (2013) Raman scattering study on sequentially Au implanted sample. AIP Conf Proc 1536:293. doi:10.1063/1.4810216

    Article  CAS  Google Scholar 

  13. Smith JE, Brodsky MH, Crowder BL et al (1971) Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors. Phys Rev Lett 26:642–646. doi:10.1103/PhysRevLett.26.642

    Article  CAS  Google Scholar 

  14. Temple PA, Hathaway CE (1973) Multiphonon Raman spectrum of silicon. Phys Rev B 7:3685–3697. doi:10.1103/PhysRevB.7.3685

    Article  CAS  Google Scholar 

  15. Kumar R, Mavi HS, Shukla AK (2010) Spectroscopic investigation of quantum confinement effects in ion implanted silicon-on-sapphire films. Silicon 2:25–31. doi:10.1007/s12633-009-9033-z

    Article  CAS  Google Scholar 

  16. Choi WK, Ng V, Ng SP et al (1999) Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing. J Appl Phys 86:1398. doi:10.1063/1.370901

    Article  CAS  Google Scholar 

  17. Serincan U, Kartopu G, Guennes A et al (2004) Characterization of Ge nanocrystals embedded in SiO2 by Raman spectroscopy. Semicond Sci Technol 19:247. doi:10.1088/0268-1242/19/2/021

    Article  CAS  Google Scholar 

  18. Li B, Yu D, Zhang S-L (1999) Raman spectral study of silicon nanowires. Phys Rev B 59:1645–1648. doi:10.1103/PhysRevB.59.1645

    Article  CAS  Google Scholar 

  19. Wang R, Zhou G, Liu Y et al (2000) Raman spectral study of silicon nanowires: high-order scattering and phonon confinement effects. Phys Rev B 61:16827–16832. doi:10.1103/PhysRevB.61.16827

    Article  CAS  Google Scholar 

  20. Piscanec S, Cantoro M, Ferrari AC et al (2003) Raman spectroscopy of silicon nanowires. Phys Rev B 68:241312. doi:10.1103/PhysRevB.68.241312

    Article  Google Scholar 

  21. Richter H, Wang ZP, Ley L (1981) The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun 39:625–629. doi:10.1016/0038-1098(81)90337-9

    Article  CAS  Google Scholar 

  22. Campbell IH, Fauchet PM (1986) The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun 58:739–741. doi:10.1016/0038-1098(86)90513-2

    Article  CAS  Google Scholar 

  23. Gouadec G, Colomban P (2007) Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Ch 53:1–56. doi:10.1016/j.pcrysgrow.2007.01.001

    Article  CAS  Google Scholar 

  24. Tubino R, Piseri L, Zerbi G (1972) Lattice dynamics and spectroscopic properties by a valence force potential of diamondlike crystals: C, Si, Ge, and Sn. J Chem Phys 56:1022–1039. doi:10.1063/1.1677264

    Article  CAS  Google Scholar 

  25. Bergman L, Nemanich RJ (1996) Raman spectroscopy for characterization of hard, wide-bandgap semiconductors: diamond, GaN, GaAlN, AlN, BN. Annu Rev Mater Sci 26:551–579. doi:10.1146/annurev.ms.26.080196.003003

    Article  CAS  Google Scholar 

  26. Mavi HS, Islam SS, Kumar R, Shukla AK (2006) Spectroscopic investigation of porous GaAs prepared by laser-induced etching. J Non-Cryst Solids 352:2236–2242. doi:10.1016/j.jnoncrysol.2006.02.046

    Article  CAS  Google Scholar 

  27. Mavi HS, Prusty S, Kumar M et al (2006) Formation of Si and Ge quantum structures by laser-induced etching. Phys Status Solidi A-Appl Mat 203:2444–2450. doi:10.1002/pssa.200521027

    Article  CAS  Google Scholar 

  28. Pivac B, Furi K, Desnica D et al (1999) Raman line profile in polycrystalline silicon. J Appl Phys 86:4383. doi:10.1063/1.371374

    Article  CAS  Google Scholar 

  29. Prusty S, Mavi HS, Shukla AK (2005) Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity. Phys Rev B 71:113313. doi:10.1103/PhysRevB.71.113313

    Article  Google Scholar 

  30. Konstantinovic MJ, Bersier S, Wang X et al (2002) Raman scattering in cluster-deposited nanogranular silicon films. Phys Rev B 66:161311. doi:10.1103/PhysRevB.66.161311

    Article  Google Scholar 

  31. Piscanec S, Ferrari AC, Cantoro M et al (2003) Raman spectrum of silicon nanowires. Mater Sci Eng C 23:931–934. doi:10.1016/j.msec.2003.09.084

    Article  Google Scholar 

  32. Brockhouse BN (1959) Lattice vibrations in silicon and germanium. Phys Rev Lett 2:256–258. doi:10.1103/PhysRevLett.2.256

    Article  CAS  Google Scholar 

  33. Kumar R, Mavi HS, Shukla AK, Vankar VD (2007) Photoexcited Fano interaction in laser-etched silicon nanostructures. J Appl Phys 101:064315. doi:10.1063/1.2713367

    Article  Google Scholar 

  34. Kumar R, Shukla AK (2009) Quantum interference in the Raman scattering from the silicon nanostructures. Phys Lett A 373:2882–2886. doi:10.1016/j.physleta.2009.06.005

    Article  CAS  Google Scholar 

  35. Shukla AK, Kumar R, Kumar V (2010) Electronic Raman scattering in the laser-etched silicon nanostructures. J Appl Phys 107:014306. doi:10.1063/1.3271586

    Article  Google Scholar 

  36. Kumar R, Shukla AK, Mavi HS, Vankar VD (2008) Size-dependent Fano interaction in the laser-etched silicon nanostructures. Nanoscale Res Lett 3:105–108. doi:10.1007/s11671-008-9120-x

    Article  CAS  Google Scholar 

  37. Adu KW, Xiong Q, Gutierrez HR, Chen G, Eklund PC (2006) Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl Phys. A 85:287–297. doi:10.1007/s00339-006-3716-8

    Article  CAS  Google Scholar 

  38. Adu KW, Gutierrez HR, Kim UJ, Sumanasekera GU, Eklund PC (2005) Confined phonons in Si nanowires. Nanoletters 5:409–414. doi:10.1021/nl048625

    Article  CAS  Google Scholar 

  39. Adu KW, Gutirrez HR, Kim UJ, Eklund PC (2006) Inhomogeneous laser heating and phonon confinement in silicon nanowires: a micro-Raman scattering study. Phys Rev B 73:155333. doi:10.1103/PhysRevB.73.155333

    Article  Google Scholar 

  40. Gupta R, Xiong Q, Adu CK et al (2003) Laser-induced Fano resonance scattering in silicon nanowires. Nano Lett 3:627–631. doi:10.1021/nl0341133

    Article  CAS  Google Scholar 

  41. Kumar R, Shukla AK (2008) Temperature dependent phonon confinement in silicon nanostructures. Phys Lett 373:133–135. doi:10.1016/j.physleta.2008.10.090

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 163 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Sahu, G., Saxena, S.K. et al. Qualitative Evolution of Asymmetric Raman Line-Shape for NanoStructures. Silicon 6, 117–121 (2014). https://doi.org/10.1007/s12633-013-9176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-013-9176-9

Keywords

Navigation