Skip to main content
Log in

Controls on the Recycling and Preservation of Biogenic Silica from Biomineralization to Burial

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The recycling of biogenic silica (bSiO2) produced by diatoms is a vital process sustaining a significant fraction of primary production in the oceans. The efficiency with which bSiO2 dissolves controls the availability of nutrient silicon in the water column, and modulates the export of organic carbon to the deep sea. Environmental conditions during biomineralization (temperature, nutrient availability, light, etc.) affect the silicification and weathering resistance of diatom frustules, while ecosystem processes, including grazing and aggregation, are determining factors for the recycling of bSiO2 in the water column. Bacterial colonization of dead diatoms leads to the decomposition of the protective organic layers allowing for the dissolution of bSiO2 to begin. The dissolution rate of diatom frustules is a function of the physicochemical properties of both the silica (e.g., specific surface area, degree of hydration and condensation, impurities) and the aqueous medium (e.g., temperature, pH, pressure, electrolyte composition). In sediments, the dissolution of bSiO2 is controlled by the presence of lithogenic minerals, aging processes and the build up of dSi in the pore waters. In particular, interactions between lithogenic silicate minerals and bSiO2 may initiate rapid diagenetic alterations that favor the preservation of bSiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45(10):1715–1732

    Article  CAS  Google Scholar 

  2. Ragueneau O et al (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Glob Planet Change 26(4):317–365

    Article  Google Scholar 

  3. Tréguer P et al (1995) The silica balance in the world ocean—a reestimate. Science 268(5209):375–379

    Article  Google Scholar 

  4. Nelson DM et al (1995) Production and dissolution of biogenic silica in the ocean—revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles 9(3):359–372

    Article  CAS  Google Scholar 

  5. Ragueneau O et al (2006) Si and C interactions in the world ocean: importance of ecological processes and implications for the role of diatoms in the biological pump. Glob Biogeochem Cycles 20. doi:10.1029/2006GB002688

  6. Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16. doi:10.1029/2002GB001894

  7. Pondaven P et al (2000) Resolving the ‘opal paradox’ in the Southern Ocean. Nature 405(6783):168–172

    Article  CAS  Google Scholar 

  8. Koning E et al (2001) Selective preservation of upwelling-indicating diatoms in sediments off Somalia, NW Indian Ocean. Deep Sea Res I 48(11):2473–2495

    Article  CAS  Google Scholar 

  9. McManus J et al (1995) Early diagenesis of biogenic opal: dissolution rates, kinetics, and paleoceanographic implications. Deep Sea Res II 42(2–3):871–903

    Article  CAS  Google Scholar 

  10. Ryves DB et al (2001) Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeogr, Palaeoclimateol, Palaeoecol 172:99–113

    Article  Google Scholar 

  11. Barker P (1992) Differential diatom dissolution in Late Quaternary sediments from Lake Manyara, Tanzania: an experimental approach. J Paleolimnol 7(3):235–251

    Article  Google Scholar 

  12. Lotter AF et al (1997) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps.1. Climate. J Paleolimnol 18(4):395–420

    Article  Google Scholar 

  13. Abelmann A, Gersonde R, Spiess V (1988) Pliocene—pleistocene paleoceanography in the Weddell Sea—siliceous microfossil evidence. In: Bleil U, Thied J (eds) Geological history of the polar oceans: arctic versus Antarctic. Kluwer Academic Publishers, Bremen, pp 729–759

    Google Scholar 

  14. Rocha CLDL (2006) Opal-based isotopic proxies of paleoenvironmental conditions. Global Biogeochemical Cycles 20(GB4S09)

  15. Martin-Jezequel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840

    Article  CAS  Google Scholar 

  16. Brzezinski MA, Olson RA, Chisholm SW (1990) Silicon availability and cell-cycle progression in marine diatoms. Mar Ecol Prog Ser 67:83–96

    Article  CAS  Google Scholar 

  17. Nelson DM, Dortch Q (1996) Silicic acid depletion and silicon limitation in the plume of the Mississippi River: evidence from kinetic studies in spring and summer. Mar Ecol Prog Ser 136:163–178

    Article  CAS  Google Scholar 

  18. Paasche E (1973) Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrient. Mar Biol 19(2):117–126

    Article  CAS  Google Scholar 

  19. Claquin P et al (2002) Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen, and phosphorous control. J Phycol 38(5):922–930

    Article  CAS  Google Scholar 

  20. Davis CO (1976) Continuous culture of marine diatoms under silicate limitation. II. Effect of light intensity on growth and nutrient uptake of Skeletonema constantum. J Phycol 12(3):291–300

    CAS  Google Scholar 

  21. Taylor NJ (1985) Silica incorporation in the diatom Coscinodiscus granii as affected by light intensity. Br Phycol J 20:365–374

    Article  Google Scholar 

  22. Durbin EG (1977) Studies in the autoecology of the marine diatom Thalassiosira nordenskioeldii. II. The influence of cell size on growth rate and carbon. nitrogen, chlorophyll a and silica content. J Phycol 13:150–155

    CAS  Google Scholar 

  23. Paasche E (1980) Silicon content of five marine plankton diatom species measured with a rapid filter method. Limnol Oceanogr 25(3):474–480

    Article  CAS  Google Scholar 

  24. Harrison PJ, Conway HL, Dugdale RC (1976) Marine diatoms grown in chemostats under silicate or ammonium limitation. I. Cellular chemical composition and steady-state growth kinetics of Skeletonema costatum. Mar Biol 35(2):177–186

    Article  CAS  Google Scholar 

  25. Harrison PJ et al (1977) Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida. Mar Biol 43(1):19–31

    Article  CAS  Google Scholar 

  26. Conley DJ, Kilham SS (1989) Differences in silica content between marine and freshwater diatoms. Limnol Oceanogr 34(1):205–213

    Article  CAS  Google Scholar 

  27. Pondaven P et al (2007) Grazing-induced changes in cell wall silicification in a marine diatom. Protist 158(1):21–28

    Article  CAS  Google Scholar 

  28. Van Cappellen P, Dixit S, Van Beusekom JEE (2002) Biogenic silica dissolution in the oceans: reconciling experimental and field-based dissolution rates. Glob Biogeochem Cycles 16. doi:10.1029/2001GB001431

  29. Dixit S, Van Cappellen P, van Bennekom AJ (2001) Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Mar Chem 73(3–4):333–352

    Article  CAS  Google Scholar 

  30. Loucaides S, Behrends T, Van Cappellen P (2010) Reactivity of biogenic silica: surface versus bulk charge density. Geochim Cosmochim Acta 74(2):517–530

    Article  CAS  Google Scholar 

  31. Brzezinski MA (1985) The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J Phycol 21(3):347–357

    Article  CAS  Google Scholar 

  32. Vrieling EG et al (2000) Nanoscale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle X-ray scattering study. J Phycol 36(1):146–159

    Article  Google Scholar 

  33. Kemp AES et al (2006) Production of giant marine diatoms and their export at oceanic frontal zones: implications for Si and C flux from stratified oceans. Global Biogeochemical Cycles, 20(GB4S04)

  34. Kemp AES et al (2000) The “Fall dump”—a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep Sea Res II 47(9–11):2129–2154

    Article  Google Scholar 

  35. Smetacek V (2000) Oceanography: the giant diatom dump. Nature 406(6796):574–575

    Article  CAS  Google Scholar 

  36. Mackenzie FT, Stoffyn M, Wollast R (1978) Aluminum in seawater: control by biological activity. Science 199(4329):680–682

    Article  CAS  Google Scholar 

  37. Menzel DW, Hulburt EM, Tyther JH (1963) The effects of enriching Sargasso sea water on the production and species composition of the phytoplankton. Deep-Sea Res Oceanogr Abstr 10(3):209–219

    Article  Google Scholar 

  38. Stoffyn M (1979) Biological control of dissolved aluminum in seawater: experimental evidence. Science 203(4381):651–653

    Article  CAS  Google Scholar 

  39. Gensemer RW (1990) Role of aluminum andgrowth rate on changes in cell size and silica content of silica-limited populations of Asterionella ralfsii var. Americana (Bacillariophyceae). J Phycol 26(2):250–258

    Article  CAS  Google Scholar 

  40. Van Cappellen P, Dixit S, Gallinari M (2002) Biogenic silica dissolution and the marine Si cycle: kinetics, surface chemistry and preservation. Océanis 28(3–4):417–454

    Google Scholar 

  41. Van Beusekom JEE (1989) Wechselwirkungen zwischen gelösten Aluminium und Phytoplankton in marinen Gewässern. Hamburg University, p 164

  42. Vrieling EG, Gieskes WWC, Beelen TPM (1999) Silicon deposition in diatoms: control by the pH inside the silicon deposition vesicle. J Phycol 35(3):548–559

    Article  CAS  Google Scholar 

  43. Van Bennekom AJ, Buma AGL, Nolting RF (1991) Dissolved aluminium in the Weddell-Scotia Confluence and effect of Al on the dissolution kinetics of biogenic silica. Mar Chem 35:423–434

    Article  Google Scholar 

  44. Hecky RE et al (1973) The amino acid and sugar composition of diatom cell-walls. Mar Biol 19(4):323–331

    Article  CAS  Google Scholar 

  45. Bidle KD, Azam F (2001) Bacterial control of silicon regeneration from diatom detritus: significance of bacterial ectohydrolases and species identity. Limnol Oceanogr 46(7):1606–1623

    Article  CAS  Google Scholar 

  46. Kamatani A, Riley JP (1979) Rate of dissolution of diatom silica walls in seawater. Mar Biol 55(1):29–35

    Article  CAS  Google Scholar 

  47. Rickert D, Schluter M, Wallmann K (2002) Dissolution kinetics of biogenic silica from the water column to the sediments. Geochim Cosmochim Acta 66(3):439–455

    Article  CAS  Google Scholar 

  48. Patrick S, Holding AJ (1985) The effect of bacteria on the solubilization of silica in diatom frustules. J Appl Bacteriol 59(1):7–16

    Article  CAS  Google Scholar 

  49. Bidle KD, Azam F (1999) Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397(6719):508–512

    Article  CAS  Google Scholar 

  50. Ward DM et al (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62(4):1353–1370

    CAS  Google Scholar 

  51. Tamburini C et al (2006) Pressure effects on surface Mediterranean prokaryotes and biogenic silica dissolution during a diatom sinking experiment. Aquat Microb Ecol 43(3):267–276

    Article  Google Scholar 

  52. Broughton LC, Gross KL (2000) Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125(3):420–427

    Article  Google Scholar 

  53. Roubeix V, Becquevort S, Lancelot C (2008) Influence of bacteria and salinity on diatom biogenic silica dissolution in estuarine systems. Biogeochemistry 88(1):47–62

    Article  CAS  Google Scholar 

  54. Corzo A, Morillo JA, Rodríguez S (2000) Production of transparent exopolymer particles (TEP) in cultures of Chaetoceros calcitrans under nitrogen limitation. Aquat Microb Ecol 23:63–72

    Article  Google Scholar 

  55. Drapeau DT, Dam HG, Grenier G (1994) An improved flocculator design for use in particle aggregation experiments. Limnol Oceanogr 39(3):723–729

    Article  Google Scholar 

  56. Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55(3–4):287–333

    Article  Google Scholar 

  57. Passow U, Engel A, Ploug H (2003) The role of aggregation for the dissolution of diatom frustules. FEMS Microbiol Ecol 46(3):247–255

    Article  CAS  Google Scholar 

  58. Malej A, Harris RP (1993) Inhibition of copepod grazing by diatom exudates: a factorin the development of mucus aggregates. Mar Ecol Prog Ser 96:33–42

    Article  Google Scholar 

  59. Staats N et al (2000) Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms. Mar Ecol Prog Ser 193:261–269

    Article  CAS  Google Scholar 

  60. Passow U et al (2001) The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont Shelf Res 21(4):327–346

    Article  Google Scholar 

  61. Alldredge AL, Gotschalk C (1988) In situ settling behavior of marine snow. Limnol Oceanogr 33(3):339–351

    Article  Google Scholar 

  62. Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Prog Oceanogr 20(1):41–82

    Article  Google Scholar 

  63. Moriceau B et al (2007) Evidence for reduced biogenic silica dissolution rates in diatom aggregates. Mar Ecol Prog Ser 333:129–142

    Article  CAS  Google Scholar 

  64. Alldredge AL, Cohen Y (1987) Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235(4789):689–691

    Article  CAS  Google Scholar 

  65. Alldredge AL et al (1990) The physical strength of marine snow and its implications for particle disaggregation in the ocean. Limnol Oceanogr 35(7):1415–1428

    Article  Google Scholar 

  66. Simon M et al (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  67. Hamm CE et al (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421(6925):841–843

    Article  CAS  Google Scholar 

  68. Turner JT et al (2002) Zooplankton feeding ecology: does a diet of Phaeocystis support good copepod grazing, survival, egg production and egg hatching success? J Plankton Res 24(11):1185–1195

    Article  Google Scholar 

  69. Fowler SW, Fisher NS (1983) Viability of marine phytoplankton in zooplankton fecal pellets. Deep Sea Res A 30(9):963–969

    Article  Google Scholar 

  70. Platt T et al (1983) Photosynthetically-competent phytoplankton from the Aphotic Zone of the Deep Ocean. Mar Ecol Prog Ser 10:105–110

    Article  CAS  Google Scholar 

  71. Schultes S (2004) The role of mesozooplankton grazing in the biogeochemical cycle of silicon in the Southern Ocean. In: Biology and chemistry. Bremen, University of Bremen, p 172

  72. Dove PM, Crerar DA (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim Cosmochim Acta 54(4):955–969

    Article  CAS  Google Scholar 

  73. Heaney PJ (1994) Structure and chemistry of the low pressure silica polymorphs. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica: physical behavior, geochemistry, and materials applications. Mineralogical Society of America, Washington, DC, pp 1–40

    Google Scholar 

  74. Iler RK (1979) The chemistry of silica. Wiley-Interscience, New York, NY, p 866

    Google Scholar 

  75. Lasaga AC, Gibbs GV (1990) Ab-initio quantum mechanical calculations of water-rock interactions: adsorption and hydrolysis reactions. Am J Sci 290:263–295

    Article  Google Scholar 

  76. Rimstidt JD, Barnes HL (1980) The kinetics of silica-water reactions. Geochim Cosmochim Acta 44(11):1683–1699

    Article  CAS  Google Scholar 

  77. Van Cappellen P, Qiu L (1997) Biogenic silica dissolution in sediments of the Southern Ocean. II. Kinetics. Deep Sea Res II 44(5):1129–1149

    Article  Google Scholar 

  78. Renders PJN, Gammons CH, Barnes HL (1995) Precipitation and dissolution rate constants for cristobalite from 150 to 300[degree sign]C. Geochim Cosmochim Acta 59(1):77–85

    Article  CAS  Google Scholar 

  79. Nelson DM, Brzezinski MA (1997) Diatom growth and productivity in an oligotrophic midocean gyre: a 3-yr record from the Sargasso Sea near Bermuda. Limnol Oceanogr 42(3):473–486

    Article  CAS  Google Scholar 

  80. Koning E et al (1997) Settling, dissolution and burial of biogenic silica in the sediments off Somalia (northwestern Indian Ocean). Deep Sea Res II 44(6–7):1341–1360

    Article  CAS  Google Scholar 

  81. Jahnke RA, Jahnke DB (2000) Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter. Deep Sea Res I 47(8):1405–1428

    Article  CAS  Google Scholar 

  82. Dixit S, Van Cappellen P (2003) Predicting benthic fluxes of silicic acid from deep-sea sediments. J Geophys Res 108. doi:10.1029/2002JC001309

  83. Greenwood JE, Truesdale VW, Rendell AR (2001) Biogenic silica dissolution in seawater—in vitro chemical kinetics. Prog Oceanogr 48(1):1–23

    Article  Google Scholar 

  84. Hurd DC, Birdwhistell S (1983) On producing a more general model for biogenic silica dissolution. Am J Sci 283(1):1–28

    Article  CAS  Google Scholar 

  85. Kamatani A (1982) Dissolution rates of silica from diatoms decomposing at various temperatures. Mar Biol 68(1):91–96

    Article  CAS  Google Scholar 

  86. Kamatani A, Riley JP, Skirrow G (1980) The dissolution of opaline silica of diatom tests in sea water. J Oceanogr Soc Jpn 36:201–208

    Article  CAS  Google Scholar 

  87. Tréguer P et al (1988) Kinetics of dissolution of antarctic diatom frustules and the biogeochemical cycle of silicon in the southern ocean. Polar Biol 9(6):397–403

    Article  Google Scholar 

  88. Hurd DC (1972) Factors affecting solution rate of biogenic opal in seawater. Earth Planet Sci Lett 15(4):411

    Article  CAS  Google Scholar 

  89. Truesdale V, Greenwood J, Rendell A (2005) The rate-equation for biogenic silica dissolution in seawater—new hypotheses. Aquat Geochem 11(3):319–343

    Article  CAS  Google Scholar 

  90. Van Cappellen P, Qiu L (1997) Biogenic silica dissolution in sediments of the Southern Ocean. I. Solubility. Deep Sea Res II 44(5):1109–1128

    Article  Google Scholar 

  91. Gallinari M et al (2002) The importance of water column processes on the dissolution properties of biogenic silica in deep-sea sediments I. Solubility. Geochim Cosmochim Acta 66(15):2701–2717

    Article  CAS  Google Scholar 

  92. Schmidt M et al (2001) Oxygen isotopes of marine diatoms and relations to opal—a maturation. Geochim Cosmochim Acta 65(2):201–211

    Article  CAS  Google Scholar 

  93. Van Cappellen P (1996) Reactive surface area control of the dissolution kinetics of biogenic silica in deep-sea sediments. Chem Geol 132(1–4):125–130

    Article  Google Scholar 

  94. Loucaides S, Van Cappellen P, Behrends T (2008) Dissolution of biogenic silica from land to ocean: the role of salinity and pH. Limnol Oceanogr 53:1614–1621

    Article  CAS  Google Scholar 

  95. Lawson DS, Hurd DC, Pankratz HS (1978) Silica dissolution rates of phytoplankton assemblages at various temperatures. Am J Sci 278:1373–1393

    Article  CAS  Google Scholar 

  96. Icenhower JP, Dove PM (2000) The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength. Geochim Cosmochim Acta 64(24):4193–4203

    Article  CAS  Google Scholar 

  97. Jourabchi P, Van Cappellen P, Regnier P (2005) Quantitative interpretation of pH distributions in aquatic sediments: a reaction-transport modeling approach. Am J Sci 305(9):919–956

    Article  CAS  Google Scholar 

  98. Hurd DC (1973) Interactions of biogenic opal, sediment and seawater in the Central Equatorial Pacific. Geochim Cosmochim Acta 37(10):2257

    Article  CAS  Google Scholar 

  99. Ploug H et al (1999) Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean. Mar Ecol Prog Ser 179:1–11

    Article  CAS  Google Scholar 

  100. Dixit S, Van Cappellen P (2002) Surface chemistry and reactivity of biogenic silica. Geochim Cosmochim Acta 66(14):2559–2568

    Article  CAS  Google Scholar 

  101. Fraysse F et al (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70(8):1939–1951

    Article  CAS  Google Scholar 

  102. Dove PM, Elston SF (1992) Dissolution kinetics of quartz in sodium-chloride solutions—analysis of existing data and a rate model for 25-Degrees-C. Geochim Cosmochim Acta 56(12):4147–4156

    Article  CAS  Google Scholar 

  103. Wirth GS, Gieskes JM (1979) The initial kinetics of the dissolution of vitreous silica in aqueous media. J Colloid Interface Sci 68(3):492–500

    Article  CAS  Google Scholar 

  104. Fraysse F et al (2006) Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon. J Geochem Explor 88(1–3):202–205

    Article  CAS  Google Scholar 

  105. Dove PM, Nix CJ (1997) The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz. Geochim Cosmochim Acta 61(16):3329–3340

    Article  CAS  Google Scholar 

  106. Willey JD (1974) The effect of pressure on the solubility of amorphous silica in seawater at 0[deg]C. Mar Chem 2(4):239

    Article  CAS  Google Scholar 

  107. Dove PM (1999) The dissolution kinetics of quartz in aqueous mixed cation solutions. Geochim Cosmochim Acta 63(22):3715–3727

    Article  CAS  Google Scholar 

  108. Kamiya H, Shimokata K (1976) The role of salts in the dissolution of powdered quartz. In: International symposium on Water-Rock Interactions. Czechoslovakian Geological Survey, Prague, Czechoslovakia

  109. Van Lier JA, DeBruyn PL, Overbeek JTG (1960) The solubility of quartz. J Phys Chem 64:1675–1682

    Article  Google Scholar 

  110. Lemaire E et al (2002) Distribution of phytoplankton pigments in nine European estuaries and implications for an estuarine typology. Biogeochemistry 59(1):5–23

    Article  CAS  Google Scholar 

  111. Ragueneau O et al (2002) Biogeochemical transformations of inorganic nutrients in the mixing zone between the Danube River and the North-western Black Sea. Estuar Coast Shelf Sci 54(3):321–336

    Article  CAS  Google Scholar 

  112. Conley DJ (1997) Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42(4):774–777

    Article  CAS  Google Scholar 

  113. Laruelle GG et al (2009) Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Glob Biogeochem Cycles 23(4):GB4031

    Article  CAS  Google Scholar 

  114. Rabouille C et al (1997) Biogenic silica recycling in surficial sediments across the Polar Front of the Southern Ocean (Indian Sector). Deep Sea Res II 44(5):1151–1176

    Article  CAS  Google Scholar 

  115. Van Beusekom JEE et al (1997) Aluminium and silicic acid in water and sediments of the Enderby and Crozet Basins. Deep Sea Res II 44(5):987

    Article  Google Scholar 

  116. van der Weijden AJ, van der Weijden CH (2002) Silica fluxes and opal dissolution rates in the northern Arabian Sea. Deep Sea Res I 49(1):157–173

    Article  Google Scholar 

  117. Boudreau BP (1990) Asymptotic forms and solutions of the model for silica-opal diagenesis in bioturbated sediments. J Geophys Res 95(C5):7367–7379

    Article  Google Scholar 

  118. Khalil K et al (2007) Constraining biogenic silica dissolution in marine sediments: a comparison between diagenetic models and experimental dissolution rates. Mar Chem 106(1–2):223–238

    Article  CAS  Google Scholar 

  119. King SL, Froelich PN, Jahnke RA (2000) Early diagenesis of germanium in sediments of the Antarctic South Atlantic: in search of the missing Ge sink. Geochim Cosmochim Acta 64(8):1375–1390

    Article  CAS  Google Scholar 

  120. Ragueneau O et al (2001) The benthic silica cycle in the Northeast Atlantic: annual mass balance, seasonality, and importance of non-steady-state processes for the early diagenesis of biogenic opal in deep-sea sediments. Prog Oceanogr 50(1–4):171–200

    Article  Google Scholar 

  121. Michalopoulos P, Aller RC (2004) Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim Cosmochim Acta 68(5):1061–1085

    Article  CAS  Google Scholar 

  122. Presti M, Michalopoulos P (2008) Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta. Cont Shelf Res 28(6):823–838

    Article  Google Scholar 

  123. Van Bennekom AJ et al (1989) Aluminium-rich opal: an intermediate in the preservation of biogenic silica in the Zaire (Congo) deep-sea fan. Deep Sea Res A 36(2):173–190

    Article  Google Scholar 

  124. Gehlen M et al (2002) Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules. Geochim Cosmochim Acta 66(9):1601–1609

    Article  CAS  Google Scholar 

  125. Koning E et al (2007) Rapid post-mortem incorporation of aluminum in diatom frustules: evidence from chemical and structural analyses. Mar Chem 106(1):97–111

    Article  CAS  Google Scholar 

  126. DeMaster DJ (2002) The accumulation and cycling of biogenic silica in the Southern Ocean: revisiting the marine silica budget. Deep Sea Res II 49(16):3155–3167

    Article  CAS  Google Scholar 

  127. Mackenzie FT, Garrels RM (1966) Chemical mass balance between rivers and oceans. Am J Sci 264(7):507–525

    Article  CAS  Google Scholar 

  128. Michalopoulos P, Aller RC, Reeder RJ (2000) Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds. Geology 28(12):1095–1098

    Article  Google Scholar 

  129. Loucaides S et al (2010) Seawater-mediated interactions between diatomaceous silica and terrigenous sediments: results from long-term incubation experiments. Chem Geol 270(1–4):68–79

    Article  CAS  Google Scholar 

  130. Hurd DC, Theyer F (1974) Changes in physical and chemical properties of biogenic silica from the Central Equatorial Pacific. I. Solubility, specific surface area, and solution rate constants of acid-cleaned samples. In: Gibb TRPJ (ed) Analytical methods in oceanography. American Chemical Society, Washington DC, pp 211–230

    Google Scholar 

  131. Gendron-Badou A et al (2003) Spectroscopic characterization of biogenic silica. J Non-Cryst Solids 316(2–3):331–337

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Socratis Loucaides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loucaides, S., Van Cappellen, P., Roubeix, V. et al. Controls on the Recycling and Preservation of Biogenic Silica from Biomineralization to Burial. Silicon 4, 7–22 (2012). https://doi.org/10.1007/s12633-011-9092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-011-9092-9

Keywords

Navigation