Skip to main content
Log in

Tests non invasifs et maladies géniques : que peut-on faire ?

Noninvasive prenatal diagnosis and monogenic diseases: What is available?

  • Mise au Point / Update
  • Published:
Revue de médecine périnatale

Résumé

L’analyse de l’ADN fœtal libre (cffDNA) dans le plasma maternel est très prometteuse pour le diagnostic prénatal des maladies monogéniques. Cependant, le diagnostic prénatal non invasif (DPNNI) de ces pathologies est limité par le manque de sensibilité des méthodes usuelles de biologie moléculaire, par l’accessibilité à des plates-formes techniques appropriées et la nécessité de mettre en place des approches sur mesure, spécifiques d’un patient ou d’une maladie. Initialement, il était seulement possible d’identifier des séquences d’ADN qui sont soit d’origine paternelle, ou soit apparues de novo dans des maladies autosomiques dominantes. Ces tests peuvent également être appliqués à des maladies autosomiques récessives si les parents portent des allèles mutés différents. Plus récemment, les outils de biologie moléculaire de seconde génération, comme le séquençage de nouvelle génération (NGS), ont permis une quantification précise de séquences spécifiques dans le plasma maternel, et par là permis une approche non invasive pour des pathologies où l’allèle muté maternel doit également être pris en compte. Aujourd’hui, le CHU de Montpellier propose le premier test prénatal non invasif de la mucoviscidose à partir du sang maternel en recherchant la mutation paternelle dans les familles avec hétérozygotie composite pour le gène CFTR.

Abstract

Analysis of cell-free fetal DNA (cffDNA) in maternal plasma is very promising for early diagnosis ofmonogenic diseases. However, noninvasive prenatal diagnosis (NIPD) of these disorders has been limited by the lack of sensitivity of the basic biomolecular methods, by the availability of suitable technical platforms, and the need to set up patient- or disease-specific custom-made approaches. Initially, it was only possible to identify DNA sequences that are either paternal in origin or have arisen de novo in some autosomal dominant conditions. NIPD can also be applied to autosomal recessive conditions if the parents carry different mutant alleles by excluding the presence of paternal mutant alleles in maternal plasma. More recently, advances in DNA technology, such as next-generation sequencing (NGS), have allowed accurate quantification of specific sequences in maternal plasma, and subsequently enabled noninvasive testing for conditions such as thalassaemia. Today, the hospital of Montpellier provides the first NIPD test for cystic fibrosis from maternal blood by analysis of the cffDNA by searching the paternal mutation in families with CFTR compound heterozygosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  1. Kitzman JO, Snyder MW, Ventura M, et al (2012) Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med 4:1–8

    Article  Google Scholar 

  2. Lench N, Barrett A, Fielding S, et al (2013) The clinical implementation of non-invasive prenatal diagnosis for single-gene disorders: challenges and progress made. Prenat Diagn 33:555–62

    Article  PubMed  Google Scholar 

  3. Daley R, Hill M, Chitty LS (2014) Noninvasive prenatal diagnosis: progress and potential. Arch Dis Child Fetal Neonatal Ed 99: F426–F30

    Article  PubMed  Google Scholar 

  4. Bustamante-Aragonés A, Rodríguez de Alba M, Perlado S, et al (2012) Noninvasive prenatal diagnosis of single-gene disorders from maternal blood. Gene 504:144–9

    Article  PubMed  Google Scholar 

  5. Barrett AN, McDonnell TCR, Chan KCA, et al (2012) Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin Chem 58:1026–32

    Article  CAS  PubMed  Google Scholar 

  6. Lam K-WG, Jiang P, Liao GJW, et al (2012) Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: application to β-thalassemia. Clin Chem 58:1467–75

    Article  CAS  PubMed  Google Scholar 

  7. Papasavva TE, Lederer CW, Traeger-Synodinos J, et al (2013) A minimal set of SNPs for the noninvasive prenatal diagnosis of β-thalassaemia. Ann Hum Genet 77:115–24

    Article  CAS  PubMed  Google Scholar 

  8. Papasavva T, van Ijcken WFJ, Kockx CEM, et al (2013) Next generation sequencing of SNPs for non-invasive prenatal diagnosis: challenges and feasibility as illustrated by an application to β-thalassaemia. Eur J Hum Genet 21:1403–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferrari M, Carrera P, Lampasona V, et al (2015) New trend in noninvasive prenatal diagnosis. Clin Chim Acta 451:9–13

    Article  CAS  PubMed  Google Scholar 

  10. Chan KCA (2014) Clinical applications of the latest molecular diagnostics in noninvasive prenatal diagnosis. Top Curr Chem 336:47–65

    Article  CAS  PubMed  Google Scholar 

  11. Tsui NBY, Lo YMD (2012) Recent advances in the analysis of fetal nucleic acids in maternal plasma. Curr Opin Hematol 19:462–8

    Article  CAS  PubMed  Google Scholar 

  12. Xiong L, Barrett AN, Hua R, et al (2015) Noninvasive prenatal diagnostic testing for β-thalassaemia using cell-free fetal DNA and next generation sequencing. Prenat Diagn 35:258–65

    Article  CAS  PubMed  Google Scholar 

  13. Chitty LS, Mason S, Barrett AN, et al (2015) Noninvasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: nextgeneration sequencing allows for a safer, more accurate, and comprehensive approach. Prenat Diagn 35:656–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hill M, Twiss P, Verhoef TI, et al (2015) Noninvasive prenatal diagnosis for cystic fibrosis: detection of paternal mutations, exploration of patient preferences and cost analysis. Prenat Diagn 35:950–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. New MI, Tong YK, Yuen T, et al (2014) Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab 99:E1022–E30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lv W, Wei X, Guo R, et al (2015) Noninvasive prenatal testing for Wilson disease by use of circulating single-molecule amplification and resequencing technology (cSMART). Clin Chem 61:172–81

    Article  CAS  PubMed  Google Scholar 

  17. Yoo SK, Lim BC, Byeun J, et al (2015) Noninvasive prenatal diagnosis of duchenne muscular dystrophy: comprehensive genetic diagnosis in carrier, proband, and fetus. Clin Chem 61:829–37

    Article  CAS  PubMed  Google Scholar 

  18. Zeevi DA, Altarescu G, Weinberg-shukron A, et al (2015) Proofof- principle rapid noninvasive prenatal diagnosis of autosomal recessive founder mutations. J Clin Invest 125:3757–65

    Article  PubMed  PubMed Central  Google Scholar 

  19. González-González MC, García-Hoyos M, Trujillo MJ, et al (2002) Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma. Prenat Diagn 22:946–8

    Article  PubMed  Google Scholar 

  20. Nasis O, Thompson S, Hong T, et al (2004) Improvement in sensitivity of allele-specific PCR facilitates reliable noninvasive prenatal detection of cystic fibrosis. Clin Chem 50:694–701

    Article  CAS  PubMed  Google Scholar 

  21. Bustamante-Aragones A, Gallego-Merlo J, Trujillo-Tiebas MJ, et al (2008) New strategy for the prenatal detection/exclusion of paternal cystic fibrosis mutations in maternal plasma. J Cyst Fibros 7:505–10

    Article  CAS  PubMed  Google Scholar 

  22. Lee ST, Kim JY, Kown MJ, et al (2011) Mutant enrichment with 3’-modified oligonucleotides a practical PCR method for detecting trace mutant DNAs. J Mol Diagn 13:657–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guissart C, Debant V, Desgeorges M, et al (2015) Noninvasive prenatal diagnosis of monogenic disorders: an optimized protocol using MEMO qPCR with miniSTR as internal control. Clin Chem Lab Med 53:205–15

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-C. Vincent.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, MC. Tests non invasifs et maladies géniques : que peut-on faire ?. Rev. med. perinat. 8, 18–25 (2016). https://doi.org/10.1007/s12611-016-0352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12611-016-0352-1

Mots clés

Keywords

Navigation