Skip to main content

Advertisement

Log in

Breast Cancer Heterogeneity: Roles in Tumorigenesis and Therapeutic Implications

  • Translational Research (TA King and EA Mittendorf, Section Editors)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Breast cancer heterogeneity constitutes a significant investigational and therapeutic challenge. Here we review recent findings on breast cancer heterogeneity, focusing on its extent across the distinct molecular subtypes, the degree of spatial and temporal intra-tumor heterogeneity, and possible approaches to dissect and counteract it.

Recent findings

Recent massively parallel sequencing studies have solidified the notion that estrogen receptor (ER)-positive and ER-negative breast cancers have divergent genetic landscapes. Numerous studies have addressed the origins of heterogeneity and the challenges it poses for patient management; however, its dynamic evolution in the light of novel targeted therapies is yet to be fully understood.

Summary

Tumor heterogeneity poses diagnostic and therapeutic challenges. Implementation of novel methodologies, such as single cell sequencing and analysis of cell-free DNA, might afford us the means to comprehend intra-tumor heterogeneity with greater precision, and to overcome the diagnostic and therapeutic challenges posed by it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. Zardavas D, Baselga J, Piccart M. Emerging targeted agents in metastatic breast cancer. Nat Rev Clin Oncol. 2013;10(4):191–210. doi:10.1038/nrclinonc.2013.29.

    Article  CAS  PubMed  Google Scholar 

  2. Haber DA, Gray NS, Baselga J. The evolving war on cancer. Cell. 2011;145(1):19–24. doi:10.1016/j.cell.2011.03.026.

    Article  CAS  PubMed  Google Scholar 

  3. Zardavas D, Pugliano L, Piccart M. Personalized therapy for breast cancer: a dream or a reality? Future Oncol. 2013;9(8):1105–19. doi:10.2217/fon.13.57.

    Article  CAS  PubMed  Google Scholar 

  4. Gillies RJ, Flowers CI, Drukteinis JS, Gatenby RA. A unifying theory of carcinogenesis, and why targeted therapy doesn’t work. Eur J Radiol. 2012;81 Suppl 1:S48–50. doi:10.1016/S0720-048X(12)70018-9.

    Article  PubMed  Google Scholar 

  5. Russnes HG, Navin N, Hicks J, Borresen-Dale AL. Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Invest. 2011;121(10):3810–8. doi:10.1172/JCI57088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet. 2011;378(9805):1812–23. doi:10.1016/S0140-6736(11)61539-0.

    Article  CAS  PubMed  Google Scholar 

  7. Koren S, Bentires-Alj M. Breast tumor heterogeneity: source of fitness, hurdle for therapy. Mol Cell. 2015;60(4):537–46. doi:10.1016/j.molcel.2015.10.031.

    Article  CAS  PubMed  Google Scholar 

  8. Ng CK, Schultheis AM, Bidard FC, Weigelt B, Reis-Filho JS. Breast cancer genomics from microarrays to massively parallel sequencing: paradigms and new insights. J Natl Cancer Inst. 2015;107(5). doi:10.1093/jnci/djv015.

  9. Swanton C, Burrell RA, Futreal PA. Breast cancer genome heterogeneity: a challenge to personalised medicine? Breast Cancer Res. 2011;13(1):104. doi:10.1186/bcr2807.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, Borowski C, et al. Toward understanding and exploiting tumor heterogeneity. Nat Med. 2015;21(8):846–53. doi:10.1038/nm.3915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerlinger M, McGranahan N, Dewhurst SM, Burrell RA, Tomlinson I, Swanton C. Cancer: evolution within a lifetime. Annu Rev Genet. 2014;48:215–36. doi:10.1146/annurev-genet-120213-092314.

    Article  CAS  PubMed  Google Scholar 

  12. Cleary AS, Leonard TL, Gestl SA, Gunther EJ. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature. 2014;508(7494):113–7. doi:10.1038/nature13187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 2016;17:31. doi:10.1186/s13059-016-0893-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat Genet. 2016;48(7):758–67. doi:10.1038/ng.3573.

    Article  CAS  PubMed  Google Scholar 

  15. Murugaesu N, Wilson GA, Birkbak NJ, Watkins TB, McGranahan N, Kumar S, et al. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov. 2015;5(8):821–31. doi:10.1158/2159-8290.CD-15-0412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6(12):924–35. doi:10.1038/nrc2013.

    Article  CAS  PubMed  Google Scholar 

  17. Menghi F, Inaki K, Woo X, Kumar PA, Grzeda KR, Malhotra A, et al. The tandem duplicator phenotype as a distinct genomic configuration in cancer. Proc Natl Acad Sci U S A. 2016;113(17):E2373–82. doi:10.1073/pnas.1520010113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kass EM, Moynahan ME, Jasin M. When genome maintenance goes badly awry. Mol Cell. 2016;62(5):777–87. doi:10.1016/j.molcel.2016.05.021.

    Article  CAS  PubMed  Google Scholar 

  19. D’Antonio M, Tamayo P, Mesirov JP, Frazer KA. Kataegis expression signature in breast cancer is associated with late onset, better prognosis, and higher HER2 levels. Cell Rep. 2016;16(3):672–83. doi:10.1016/j.celrep.2016.06.026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Nguyen LV, Pellacani D, Lefort S, Kannan N, Osako T, Makarem M, et al. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature. 2015;528(7581):267–71. doi:10.1038/nature15742.

    Article  CAS  PubMed  Google Scholar 

  21. •• Gao R, Davis A, McDonald TO, Sei E, Shi X, Wang Y, et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat Genet. 2016;48(10):1119–30. doi:10.1038/ng.3641. This single cell sequencing study shows that copy number alterations occur as punctuated events early in the life of a tumor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. Identification of neutral tumor evolution across cancer types. Nat Genet. 2016;48(3):238–44. doi:10.1038/ng.3489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149(5):979–93. doi:10.1016/j.cell.2012.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):47–54. doi:10.1038/nature17676. This study identified novel rearrangement mutational signatures in breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. doi:10.1038/nature12477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smid M, Rodriguez-Gonzalez FG, Sieuwerts AM, Salgado R, Prager-Van der Smissen WJ, Vlugt-Daane MV. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration. Nat Commun. 2016;7:12910. doi:10.1038/ncomms12910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. doi:10.1038/35021093.

    Article  CAS  PubMed  Google Scholar 

  28. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74. doi:10.1073/pnas.191367098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23. doi:10.1073/pnas.0932692100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68. doi:10.1186/bcr2635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24(29):4660–71. doi:10.1038/sj.onc.1208561.

    Article  CAS  PubMed  Google Scholar 

  32. Zardavas D, Irrthum A, Swanton C, Piccart M. Clinical management of breast cancer heterogeneity. Nat Rev Clin Oncol. 2015;12(7):381–94. doi:10.1038/nrclinonc.2015.73.

    Article  CAS  PubMed  Google Scholar 

  33. Ciriello G, Sinha R, Hoadley KA, Jacobsen AS, Reva B, Perou CM, et al. The molecular diversity of Luminal A breast tumors. Breast Cancer Res Treat. 2013;141(3):409–20. doi:10.1007/s10549-013-2699-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weigelt B, Mackay A, A’Hern R, Natrajan R, Tan DS, Dowsett M, et al. Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol. 2010;11(4):339–49. doi:10.1016/S1470-2045(10)70008-5.

    Article  CAS  PubMed  Google Scholar 

  35. Mackay A, Weigelt B, Grigoriadis A, Kreike B, Natrajan R, A’Hern R, et al. Microarray-based class discovery for molecular classification of breast cancer: analysis of interobserver agreement. J Natl Cancer Inst. 2011;103(8):662–73. doi:10.1093/jnci/djr071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haibe-Kains B, Desmedt C, Loi S, Culhane AC, Bontempi G, Quackenbush J, et al. A three-gene model to robustly identify breast cancer molecular subtypes. J Natl Cancer Inst. 2012;104(4):311–25. doi:10.1093/jnci/djr545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67. doi:10.1172/JCI45014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533–40. doi:10.1158/1078-0432.CCR-13-0799.

    Article  CAS  PubMed  Google Scholar 

  39. Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One. 2016;11(6):e0157368. doi:10.1371/journal.pone.0157368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2014;21(7):1688–98. doi:10.1158/1078-0432.CCR-14-0432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013. doi:10.1200/JCO.2013.50.9984.

    Article  PubMed  Google Scholar 

  42. Carey LA, Berry DA, Cirrincione CT, Barry WT, Pitcher BN, Harris LN, et al. Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J Clin Oncol. 2016;34(6):542–9. doi:10.1200/JCO.2015.62.1268.

    Article  CAS  PubMed  Google Scholar 

  43. Ferrari A, Vincent-Salomon A, Pivot X, Sertier AS, Thomas E, Tonon L, et al. A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers. Nat Commun. 2016;7:12222. doi:10.1038/ncomms12222.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gagliato DM, Jardim DL, Marchesi MS, Hortobagyi GN. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget. 2016;7(39):64431–46. doi:10.18632/oncotarget.7043.

  45. Pogue-Geile KL, Song N, Jeong JH, Gavin PG, Kim SR, Blackmon NL, et al. Intrinsic subtypes, PIK3CA mutation, and the degree of benefit from adjuvant trastuzumab in the NSABP B-31 trial. J Clin Oncol. 2015;33(12):1340–7. doi:10.1200/JCO.2014.56.2439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perez EA, Ballman KV, Mashadi-Hossein A, Tenner KS, Kachergus JM, Norton N et al. Intrinsic subtype and therapeutic response among HER2-positive Breaty st tumors from the NCCTG (Alliance) N9831 trial. J Natl Cancer Inst. 2017;109(2). doi:10.1093/jnci/djw207.

  47. Kim J, Pareja F, Weigelt B, Reis-Filho JS. Prediction of Trastuzumab benefit in HER2-positive breast cancers: is it in the intrinsic subtype?. J Natl Cancer Inst. 2017;109(2). doi:10.1093/jnci/djw218.

  48. Ali H, Rueda OM, Chin SF, Curtis C, Dunning MJ, Aparicio S, et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biol. 2014;15(8):431. doi:10.1186/s13059-014-0431-1.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52. doi:10.1038/nature10983.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. •• Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479. doi:10.1038/ncomms11479. This work integrates copy number alterations, gene expression and clinical follow-up data, and describes the clonal status of mutations in driver genes, their intra-tumor heterogeneity, and association with clinical outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. doi:10.1038/nature11412.

  52. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163(2):506–19. doi:10.1016/j.cell.2015.09.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weigelt B, Reis-Filho JS. Epistatic interactions and drug response. J Pathol. 2014;232(2):255–63. doi:10.1002/path.4265.

    Article  PubMed  Google Scholar 

  54. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9. doi:10.1038/nature12634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Kruijf EM, Dekker TJ, Hawinkels LJ, Putter H, Smit VT, Kroep JR, et al. The prognostic role of TGF-beta signaling pathway in breast cancer patients. Ann Oncol. 2013;24(2):384–90. doi:10.1093/annonc/mds333.

    Article  PubMed  Google Scholar 

  56. Cottu PH, Asselah J, Lae M, Pierga JY, Dieras V, Mignot L, et al. Intratumoral heterogeneity of HER2/neu expression and its consequences for the management of advanced breast cancer. Ann Oncol. 2008;19(3):595–7. doi:10.1093/annonc/mdn021.

    Article  CAS  PubMed  Google Scholar 

  57. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4. doi:10.1038/nature09807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 2009;20(1):68–80. doi:10.1101/gr.099622.109.

    Article  PubMed  CAS  Google Scholar 

  59. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature. 2009;461(7265):809–13. doi:10.1038/nature08489.

    Article  CAS  PubMed  Google Scholar 

  60. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9. doi:10.1038/nature10933.

    CAS  PubMed  Google Scholar 

  61. Turner NC, Reis-Filho JS. Genetic heterogeneity and cancer drug resistance. Lancet Oncol. 2012;13(4):e178–85. doi:10.1016/S1470-2045(11)70335-7.

    Article  PubMed  Google Scholar 

  62. Geyer FC, Weigelt B, Natrajan R, Lambros MB, de Biase D, Vatcheva R, et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol. 2010;220(5):562–73. doi:10.1002/path.2675.

    Article  CAS  PubMed  Google Scholar 

  63. Pandis N, Teixeira MR, Adeyinka A, Rizou H, Bardi G, Mertens F, et al. Cytogenetic comparison of primary tumors and lymph node metastases in breast cancer patients. Genes Chromosomes Cancer. 1998;22(2):122–9. doi:10.1002/(SICI)1098-2264(199806)22:2<122::AID-GCC6>3.0.CO;2-Z.

    Article  CAS  PubMed  Google Scholar 

  64. Park SY, Gonen M, Kim HJ, Michor F, Polyak K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest. 2010;120(2):636–44. doi:10.1172/JCI40724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Torres L, Ribeiro FR, Pandis N, Andersen JA, Heim S, Teixeira MR. Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases. Breast Cancer Res Treat. 2007;102(2):143–55. doi:10.1007/s10549-006-9317-6.

    Article  PubMed  Google Scholar 

  66. Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS. Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 2014;16(3):210. doi:10.1186/bcr3658.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8. doi:10.1126/science.959840.

    Article  CAS  PubMed  Google Scholar 

  68. Stratton MR. Exploring the genomes of cancer cells: progress and promise. Science. 2011;331(6024):1553–8. doi:10.1126/science.1204040.

    Article  CAS  PubMed  Google Scholar 

  69. •• Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G, Van Loo P, et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med. 2015;21(7):751–9. doi:10.1038/nm.3886. This study, in which geographically separated tumor areas were analyzed, showed that genetic alterations that drive metastasis may be subclonal in the primary tumor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ng CK, Martelotto LG, Gauthier A, Wen HC, Piscuoglio S, Lim RS, et al. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol. 2015;16:107. doi:10.1186/s13059-015-0657-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. von Wahlde MK, Timms KM, Chagpar AB, Wali VB, Jiang T, Bossuyt V, et al. Intratumor heterogeneity of homologous recombination deficiency in primary breast cancer. Clin Cancer Res. 2016. doi:10.1158/1078-0432.CCR-16-0889.

    Google Scholar 

  72. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010;464(7291):999–1005. doi:10.1038/nature08989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. • Murtaza M, Dawson SJ, Pogrebniak K, Rueda OM, Provenzano E, Grant J, et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat Commun. 2015;6:8760. doi:10.1038/ncomms9760. This serial assessment of multiple tissue biopsies and plasma samples of a breast cancer patient showed that changes in the levels of subclonal mutations correlate with different responses to therapy in distinct metastatic foci.

  74. •• Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H, et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature. 2015;518(7538):240–4. doi:10.1038/nature13948. Illustration of convergent genotype in different metastatic foci leading to resistance to targeted therapy.

  75. Janiszewska M, Liu L, Almendro V, Kuang Y, Paweletz C, Sakr RA, et al. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat Genet. 2015;47(10):1212–9. doi:10.1038/ng.3391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Weigelt B, Downward J. Genomic determinants of PI3K pathway inhibitor response in cancer. Front Oncol. 2012;2:109. doi:10.3389/fonc.2012.00109.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Goswami RS, Patel KP, Singh RR, Meric-Bernstam F, Kopetz ES, Subbiah V, et al. Hotspot mutation panel testing reveals clonal evolution in a study of 265 paired primary and metastatic tumors. Clin Cancer Res. 2015;21(11):2644–51. doi:10.1158/1078-0432.CCR-14-2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee JY, Park K, Lim SH, Kim HS, Yoo KH, Jung KS et al. Mutational profiling of brain metastasis from breast cancer: matched pair analysis of targeted sequencing between brain metastasis and primary breast cancer. Oncotarget. 2015; 6(41):43731–42. doi:10.18632/oncotarget.6192.

  79. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, et al. Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res. 2014;20(7):1757–67. doi:10.1158/1078-0432.CCR-13-2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013;4(6):1116–30. doi:10.1016/j.celrep.2013.08.022.

    Article  CAS  PubMed  Google Scholar 

  81. Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013;45(12):1446–51. doi:10.1038/ng.2823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45(12):1439–45. doi:10.1038/ng.2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature. 2014;514(7520):54–8. doi:10.1038/nature13556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K, Marlow S, et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med. 2014;20(6):682–8. doi:10.1038/nm.3559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12(5):323–34. doi:10.1038/nrc3261.

    Article  CAS  PubMed  Google Scholar 

  86. Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C. Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Med. 2012;4(127):127ps10. doi:10.1126/scitranslmed.3003854.

    Article  PubMed  CAS  Google Scholar 

  87. Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, et al. Genome-wide copy number analysis of single cells. Nat Protoc. 2012;7(6):1024–41. doi:10.1038/nprot.2012.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baslan T, Kendall J, Ward B, Cox H, Leotta A, Rodgers L, et al. Optimizing sparse sequencing of single cells for highly multiplex copy number profiling. Genome Res. 2015;25(5):714–24. doi:10.1101/gr.188060.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Leung ML, Wang Y, Waters J, Navin NE. SNES: single nucleus exome sequencing. Genome Biol. 2015;16:55. doi:10.1186/s13059-015-0616-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X, et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature. 2014;512(7513):155–60. doi:10.1038/nature13600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R, et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene. 2010;29(14):2013–23. doi:10.1038/onc.2009.489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Almendro V, Cheng YK, Randles A, Itzkovitz S, Marusyk A, Ametller E, et al. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 2014;6(3):514–27. doi:10.1016/j.celrep.2013.12.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bienko M, Crosetto N, Teytelman L, Klemm S, Itzkovitz S, van Oudenaarden A. A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nat Methods. 2012;10(2):122–4. doi:10.1038/nmeth.2306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods. 2008;5(10):877–9. doi:10.1038/nmeth.1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bagasra O. Protocols for the in situ PCR-amplification and detection of mRNA and DNA sequences. Nat Protoc. 2007;2(11):2782–95. doi:10.1038/nprot.2007.395.

    Article  CAS  PubMed  Google Scholar 

  96. Bossuyt V, Provenzano E, Symmans WF, Boughey JC, Coles C, Curigliano G, et al. Recommendations for standardized pathological characterization of residual disease for neoadjuvant clinical trials of breast cancer by the BIG-NABCG collaboration. Ann Oncol. 2015;26(7):1280–91. doi:10.1093/annonc/mdv161.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Marchio C, Maletta F, Annaratone L, Sapino A. The perfect pathology report after neoadjuvant therapy. J Natl Cancer Inst Monogr. 2015;2015(51):47–50. doi:10.1093/jncimonographs/lgv016.

    Article  PubMed  Google Scholar 

  98. Marchio C, Sapino A. The pathologic complete response open question in primary therapy. J Natl Cancer Inst Monogr. 2011;2011(43):86–90. doi:10.1093/jncimonographs/lgr025.

    Article  PubMed  Google Scholar 

  99. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. doi:10.1056/NEJMoa1113205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. De Mattos-Arruda L, Mayor R, Ng CK, Weigelt B, Martinez-Ricarte F, Torrejon D, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839. doi:10.1038/ncomms9839.

    Article  PubMed  CAS  Google Scholar 

  101. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199–209. doi:10.1056/NEJMoa1213261.

    Article  CAS  PubMed  Google Scholar 

  102. Chu D, Paoletti C, Gersch C, VanDenBerg D, Zabransky D, Cochran R, et al. ESR1 mutations in circulating plasma tumor DNA from metastatic breast cancer patients. Clin Cancer Res. 2015;22(4):993–9. doi:10.1158/1078-0432.CCR-15-0943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. • Chandarlapaty S, Chen D, He W, Sung P, Samoila A, You D, et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol. 2016;2(10):1310–5. doi:10.1001/jamaoncol.2016.1279. This study showed that the most common ESR1 mutations (Y537S and D538G) in metastatic breast cancer in the context of hormonal therapy predict shorter patient survival.

    Article  PubMed  Google Scholar 

  104. • Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015;7(302):302ra133. doi:10.1126/scitranslmed.aab0021. In this study the serial assessment of mutations found in plasma showed that they correlated with the genetic alterations in minimal residual disease in the neoadjuvant setting.

    Article  PubMed  Google Scholar 

  105. Dancey JE, Chen HX. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug Discov. 2006;5(8):649–59. doi:10.1038/nrd2089.

    Article  CAS  PubMed  Google Scholar 

  106. Goldie JH, Coldman AJ, Gudauskas GA. Rationale for the use of alternating non-cross-resistant chemotherapy. Cancer Treatment Rep. 1982;66(3):439–49.

    CAS  Google Scholar 

  107. Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treatment Rep. 1979;63(11-12):1727–33.

    CAS  Google Scholar 

  108. Kao KC, Sherlock G. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet. 2008;40(12):1499–504. doi:10.1038/ng.280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA, Zawistowski JS, et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell. 2012;149(2):307–21. doi:10.1016/j.cell.2012.02.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fresia Pareja or Jorge S. Reis-Filho.

Ethics declarations

Conflict of Interest

Fresia Pareja, Caterina Marchiò, Felipe C. Geyer, Britta Weigelt, and Jorge S. Reis-Filho declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Translational Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pareja, F., Marchiò, C., Geyer, F.C. et al. Breast Cancer Heterogeneity: Roles in Tumorigenesis and Therapeutic Implications. Curr Breast Cancer Rep 9, 34–44 (2017). https://doi.org/10.1007/s12609-017-0233-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-017-0233-z

Keywords

Navigation