Skip to main content
Log in

Therapeutic role of Punica granatum (pomegranate) seed oil extract on bone turnover and resorption induced in ovariectomized rats

  • Published:
The journal of nutrition, health & aging

Abstract

Context

Postmenopausal osteoporosis is mostly caused by increased bone remodeling resulting from estrogen deficiency. Hormone replacement therapy (HRT) is used to prevent osteoporosis, but it increases the risk for breast cancer, thromboembolism, strokes, and heart attacks. Pomegranate seed oil extract (SOE) is rich in phytoestrogen and antioxidant compounds.

Objectives

To evaluate the therapeutic role of SOE against bone turnover, resorption and osteoporosis induced in ovariectomized rats as a postmenopausal model and comparing the results with those from Generic CycloProgynova drug (D).

Design

The study used western albino rats undergo bilaterally ovariectomization as a model for postmenopausal.

Setting

The study took part in a laboratory setting. Animals: Forty female western albino rats (age: 3-4 months) weighing 150-180 gm.

Measurements

Rats were divided into four groups, 10 rats each; SC-group: Sham control = untreated and unovariectomized rats; OVX-group = ovariectomized rats; (OVX-SOE) and (OVX-D) groups = OVX rats were treated with SOE and D, respectively. Bone markers (BMs) especially osteocalcin (BGP), alkaline phosphatase (ALP), tartarate resistance acid phosphatase (TRAcP), bone weight, bone calcium concentration, serum electrolytes (calcium, sodium and potassium) and serum estradiol (E2) level and histopathological examination of bones were determined. Also lipid profile, uric acid, prothrombin time (INR) and liver and kidney functions were measured to evaluate the adverse effects of SOE and D.

Results

In OVX group the activities of ALP and TRAcP and the levels of BGP, serum calcium, sodium and body weight were significantly higher (p≤0.05) than SC-group, while bone calcium concentration, bone mass, serum E2 and potassium level as well as uterus mass were significantly lower (p≤0.05). Also histopathological results revealed that the outer cortical bone became thinner, while the cancellous bone trabeculae lost their normal architecture. Moreover in OVX group lipid profile and uric acid levels were significantly higher (p≤0.05) than SC group, but there were no significant changes (p≤0.05) in INR level, liver and kidney functions. Treatment of OVX rats with SOE or D for 12 weeks improved both the architecture of bones as shown from the histopathological results and BMs, serum electrolytes and E2 levels (p≤0.05) which approached SC-group. Moreover after treatment of OVX rats with SOE the levels of lipid profile and uric acid were improved and approached SC-group, while liver function became significant lower (p≤0.05) than SC-group. Also there were no significant changes (p≤0.05) in kidney functions and INR of (OVX-SOE), OVX and SC groups. In contrast in (OVX-D) group the levels of lipid profile, liver and kidney functions, uric acid and INR were significantly higher (p≤0.05) than those of OVX and SC groups.

Conclusion

The results of this study show that SOE has therapeutic effects on osteoporosis, while it has no adverse effects on lipid profile, uric acid, liver and kidney functions when compared to HRT. SOE offers a promising alternative in the design of new strategies in nutritional management of age-related bone complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Table 1

Similar content being viewed by others

References

  1. Ferrari S, Bianchi ML, Eisman JA, Foldes AJ, Adami S, Wahl DA, Stepan JJ, de Vernejoul MC, Kaufman JM;. OP in young adults: pathophysiology, diagnosis, and management. Osteoporos Int. 2012;23:2735–2748.

    Article  CAS  PubMed  Google Scholar 

  2. Wang H, Liu C. Association of MTHFR C667T polymorphism with BMD and fracture risk: an updated meta-analysis. Osteoporos Int. 2012;23:2625–2634.

    Article  CAS  PubMed  Google Scholar 

  3. Lee HR, Kim TH, Choi KC. Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab Anim Res. 2012;28:71–76.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Seibel MJ. Biochemical markers of bone turnover part I: Biochemistry and Variability. Clin Biochem Rev. 2005;26:97–122.

    PubMed  PubMed Central  Google Scholar 

  5. Gapstur SM, Morrow M, Sellers TA. Hormone replacement therapy and risk of breast cancer with a favorable histology: results of the Iowa Women’s Health Study. JAMA 1999;281(22):2091–2097.

    Article  CAS  PubMed  Google Scholar 

  6. Magee PJ, Rowland IR. Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Br J Nutr. 2004;91(4):513–531.

    Article  CAS  PubMed  Google Scholar 

  7. Barnes S. Phytoestrogens and breast cancer. Baillieres Clin Endocrinol Metabol. 1998;12(4):559–579.

    Article  CAS  Google Scholar 

  8. Sreekumar S, Sithul H, Muraleedharan P, Azeez JM, and Sreeharshan S. Pomegranate fruit as a rich source of biologically active compounds. BioMed Res Int. 2014;2014:686921.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ke HZ, Paralkak VM, Grasser WA, Crawford DT, Qi H, Simmons HA, Pirie CM, Chidsey-Frink KL, Owen TA, Smock SL, Chen HK, Jee WSS, Cameron KO, Rosati RL, Brown TA, DaSilva-Jardine P, Thompson DD. Effects of CP- 336,156, a new, nonsteroidal estrogen agonist/antagonist, on bone, serum cholesterol, uterus, and body composition in rat models. Endocrinol. 1998;139:2068–2076.

    Article  CAS  Google Scholar 

  10. Glazier MG, Bowman MA. A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch Intern Med. 2001;161(9):1161–1172.

    Article  CAS  PubMed  Google Scholar 

  11. Brzezinski A, Debi A. Phytoestrogens: the “natural” selective estrogen receptor modulators?” Europ J Obstetrics Gynecol Reproduct Biol. 1999;85(1):47–51.

    Article  CAS  Google Scholar 

  12. Halbreich U Kahn LS. Selective oestrogen receptor modulators current and future brain and behavior applications. Expert Opinion on Pharmacotherapy. 2000;1(7):1385–1398.

    Article  CAS  PubMed  Google Scholar 

  13. Shaban NZ, El-Kersh MA, Bader-Eldin MM, Kato SA, Hamoda AF. Effect of punica granatum (pomegranate) juice extract on healthy liver and hepatotoxicity induced by diethylnitrosamine and Phenobarbital in Male Rats. J med food. 2014;17(3):339–349.

    Article  CAS  PubMed  Google Scholar 

  14. Lansky EP, Newman RA. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol. 2007;109(2):177–206.

    Article  CAS  PubMed  Google Scholar 

  15. Viuda-Martos M, J. Fernandez-Loaez J, Perez-alvarez JA, Pomegranate and its many functional components as related to human health: a review,” Comprehensive Reviews in Food Science and Food Safety. 2010;9(6):635–654.

    Article  CAS  Google Scholar 

  16. Aviram M, Dornfeld L, Rosenblat M, Volkova N, Kaplan M, Coleman R, Hayek T, Presser D, Fuhrman B. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr. 2000;71(5):1062–1076.

    Article  CAS  PubMed  Google Scholar 

  17. Miguel G, Fontes C, Antunes D, Neves A, Martins D. Anthocyanin concentration of “Assaria” Pomegranate fruits during different Cold storage conditions. J. Biomed. Biotechnol. 2004b;5): 338–342.

    Article  Google Scholar 

  18. Melgarejo P, Salazar DM, Amoros A. Total lipids content and fatty acid composition of seed oils from six pomegranate cultivars. J. Sci. Food Agr. 1995;69:253–256.

    Article  CAS  Google Scholar 

  19. Shaban NZ, El-Kersh MA, El-Rashidy FH, Habashy NH. Protective role of punica granatum (pomegranate) peel and seed oil extracts on diethylnitrosamine and phenobarbital-induced hepatic Injury in Male Rats. Food chem. 2013;141:1587–1596.

    Article  CAS  PubMed  Google Scholar 

  20. Schubert SY, Lansky EP, Neeman I. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoid. J. Ethnopharmacol. 1999;66:11–17.

    Article  CAS  PubMed  Google Scholar 

  21. Kohno H, Suzuki R, Yasui Y, Hosokawa M, Miyashita K, Tanaka T. Pomegranate seed oil rich in conjugated linolenic acid suppress chemically induced colon carcinogenesis in rats. Cancer Sci. 2004;95(6):481–486.

    Article  CAS  PubMed  Google Scholar 

  22. Hora JJ, Maydew ER, Lansky EP, Dwivedi C. Chempreventive effects of pomegranate seed oil on skin tumor development in CD1 mice. J. Med. Food. 2003;6(3):157–161.

    Article  CAS  Google Scholar 

  23. Suzuki R, Noguchi R, Ota T, Abe M, Miyashita K, Kawada T. Cytotoxic effect of conjugated trienoic fatty acids on mouse tumor and human monocytic leukemia cells. Lipids. 2001;36:477–482.

    Article  CAS  PubMed  Google Scholar 

  24. Mori-Okamoto J, Otawara-Hamamoto Y, Yamato H, Yoshimura H. Pomegranate extract improves a depressive state and bone properties in menopausal syndrome model ovariectomized mice. J Ethnopharmacol. 2004;92(1):93–101.

    Article  PubMed  Google Scholar 

  25. Griffith J, Farris E. The osseous system. In: The rat in laboratory investigation. Griffith, J. and Farris, E. (eds.). J.B. Lippincott Co., USA. 1942;pp. 418–419.

    Google Scholar 

  26. Ratcliffe WA, Carter GD, Dowsett M, Hillier SG, Middle JG, Reed MJ. Estradiol assays: applications and guidelines for the provision of a clinical biochemistry service. Ann Clin Biochem. 1988;(5):466–83.

    Article  Google Scholar 

  27. Rosenquist C, Qvist P, Bjarnason N, Christiansen C. Measurement of a more stable region of Osteocalcin in serum by ELISA with two monoclonal antibodies. J Clin Chem. 1995;41(10):1439–1445.

    CAS  Google Scholar 

  28. McCrudden R. Calcium and phosphorus relations to growth and composition of blood and bone with varying vitamin intake. J. Biol. Chem 1923;58:71–103.

    Google Scholar 

  29. Kochmar JF, Moss DW. Fundamentals of clinical company. Tietz N.W (ed), W.B. Saunders and company, Philadelphia, PA. 1976;604.

  30. Lau K H-W, Onishi T, Wergedal JE, Singer FR, Baylink DJ. Characterization and assay of tartrate-resistant acid phosphatase activityin serum: potential use to assess bone resorption. J. Clin Chem 1987;33:458–62.

    CAS  Google Scholar 

  31. Quick AJ, Stanly-Brown M, Bancroft FW. A study of the coagulation defect in hemophilia and in jaundice. Am J Med Sci 1980;29;44(1):1–5.

    Google Scholar 

  32. Gindler M, King JD. Rapid colorimetric determination of calcium in biologic fluids with methylthymol blue. Am J Clin Pathol 1972;58(4) 376–82.

    Article  CAS  PubMed  Google Scholar 

  33. Sunderman FWJr, Sunderman FW. Studies in serum electrolytes. XXII. A rapid, reliable method for serum potassium using tetraphenylboron. Am J Clin Pathol 1958;29:95.

    Article  CAS  PubMed  Google Scholar 

  34. Trinder P. A rapid method for the determination of sodium in serum. Analyst, 1951;76:596–599.

    Article  CAS  Google Scholar 

  35. Bucolo G, David H, Quantitative determination of serum triglycerides by the use of the enzymes. J Clin Chem 1973;19/5, 476–482.

    CAS  Google Scholar 

  36. Richmound W. Preparation and properties of cholesterol oxidase from Nocardia spp and its application to the enzymatic assay of total cholesterol in a serum. Clin Chem. 1973;19(12):1350–6.

    Google Scholar 

  37. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am J Clin Pathol 1957;28:56–60

    Article  CAS  PubMed  Google Scholar 

  38. Bartels H, Bohmer M. Serum Micro-determination of creatinine. J Clin Chim Acta 1972;32:81–85.

    Article  Google Scholar 

  39. Patton CJ, Crouch SR. Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Anal Chem 1977;49:464–469.

    Article  CAS  Google Scholar 

  40. Barham D, Trinder P. An improved color reagent for the determination of blood glucose by the oxidase system». J Analyst 1972;97,142–52.

    Article  CAS  Google Scholar 

  41. Leboff MS, Kohlmeier L, Hurwitz S, et al. Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. J Am Med Assoc. 1999;281, 1505–1511.

    Article  CAS  Google Scholar 

  42. Aloia JF, McGowan DM, Vaswani AN, Ross P, Cohn SH. Relationship of menopause to skeletal and muscle mass. Am j Clinical Nutr 1991;53:1378–1383.

    Article  CAS  Google Scholar 

  43. Wronski TJ, Lowry PL, Walsh CC, Ignaszewski LA. Skeletal alterations in ovariectomized rats. J. Calcified Tissue Internat 1985;37:324–8.

    Article  CAS  Google Scholar 

  44. Heaney RP. Role of dietary sodium in OP. J Am College Nutr 2006;25(3 Suppl): 271S–276S.

    Article  CAS  Google Scholar 

  45. Johnson RB, Gilbert JA, Cooper RC, Parsell DE, Stewart BA, Dai X, Nick TG, Streckfus CF, Butler RA, Boring JG.: Effect of Estrogen Deficiency on Skeletal and Alveolar Bone Density in Sheep. J Periodontol 2002;73(4):383–91.

    Article  CAS  PubMed  Google Scholar 

  46. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of OP. Endocrinol Rev 2000;21:115–137.

    CAS  Google Scholar 

  47. Kaji H1, Sugimoto T, Kanatani M, Nasu M, Chihara K. Estrogen blocks parathyroid hormone (PTH)-stimulated osteoclast-like cell formation by selectively affecting PTHresponsive cyclic adenosine monophosphate pathway. Endocrinol 1996;137(6):2217–24.

    Article  CAS  Google Scholar 

  48. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 2000;106(10):1229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim DI, Choi MS, Pak SC, Lee, Jeon S. The effects of Sutaehwan-Gami on menopausal symptoms induced by ovariectomy in rats. Complem Altern Med (BMC) 2012;12:227.

    Article  Google Scholar 

  50. Ma B, Zhang Q, Wang GJ, A JY, Wu D, Liu Y, Cao B, Liu LS, Hu YY, Wang YL, Zheng YY. GC-TOF/MS-based metabolomic profiling of estrogen. Acta Pharmacol Sinica 2011;32(2):270–8.

    Article  CAS  Google Scholar 

  51. Herrero P, Soto PF, Dence CS, Kisrieva-Ware Z, Delano DA, Peterson LR, Gropler RJ. Impact of hormone replacement on myocardial fatty acid metabolism: potential role of estrogen. J Nucl Cardiol 2005;12:574–81.

    Article  PubMed  Google Scholar 

  52. Furman E, Rushkin E, Margalit R, Bendel P, Degani H. Tamoxifen induced changes in MCF7 human breast cancer: in vitro and in vivo studies using nuclear magnetic resonance spectroscopy and imagingSteroid. BiochemMolec Biol 1992;43:189–95.

    CAS  Google Scholar 

  53. Mataumoto J, Kishida T, Ebihara K. Sugar beet fiber suppresses ovarian hormone deficiency-induced hypercholesterolemia in rats. J. Nutr Res 2001;21:1519–27.

    Article  CAS  Google Scholar 

  54. Ma B, Zhang Q, Wang GJ, A JY, Wu D, Liu Y, Cao B, Liu LS, Hu YY, Wang YL, Zheng YY. GC-TOF/MS-based metabolomic profiling of estrogen. Acta Pharmacol Sinica 2011;32(2):270–8.

    Article  CAS  Google Scholar 

  55. Kameda T, Mano H, Yuasa T, Mori Y, Miyazawa K, Shiokawa M, Nakamaru Y, Hiroi E, Hiura K, Kameda, Na N. Yang, Hakeda Y, Kumegawa M. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 1997;186(4):489–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sribnick EA, Matzelle DD, Ray SK, Banik NL. Estrogen treatment of spinal cord injury attenuates calpain activation and apoptosis. J Neurosci Res 2006;84:1064–1075.

    Article  CAS  PubMed  Google Scholar 

  57. Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: Antioxidants or signalling molecules? Free Radic Biol Med 2004;36:838–849.

    Article  CAS  PubMed  Google Scholar 

  58. McTiernan A, Wactawski-Wende J, Wu L, Rodabough RJ, Watts NB, Tylavsky F, Freeman R, Hendrix S, Jackson R. Low-fat, increased fruit, vegetable, and grain dietary pattern, fractures, and BMD: The women’s health initiative dietary modification trial. Am. J. Clin. Nutr 2009;89:1864–1876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arjmandi BH, Khalil DA, Lucas EA, Georgis A, Stoecker BJ, Hardin C, Payton ME, Wild RA. Dried plums improve indices of bone formation in postmenopausal women. J Women’s Health Gend Based Med 2002;11:61–68.

    Article  Google Scholar 

  60. Shen CL, von Bergen V, Chyu MC, Jenkins MR, Mo H, Chen CH, Kwun IS. Fruits and dietary phytochemicals in bone protection. Nutr Res 2012;32:897–910.

    Article  CAS  PubMed  Google Scholar 

  61. Trzeciakiewicz A, Habauzit V, Horcajada MN. When nutrition interacts with osteoblast function: Molecular mechanisms of polyphenols. Nutr. Res. Rev. 2009;22:68–81.

    Article  CAS  PubMed  Google Scholar 

  62. Kurklu M, Yildiz C, Kose O, Yurttas Y, Karacalioglu O, Serdar M, Deveci S. Effect of alpha-tocopherol on bone formation during distraction osteogenesis: a rabbit model. J Orthopaed Traumatol, 2011;12:153–158.

    Article  Google Scholar 

  63. Lee SU, Park SJ, Kwak HB, Oh J, Min YK, Kim SH. Anabolic activity of ursolic acid in bone: Stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo. J Pharmacol Res 2008;58:290–296.

    Article  CAS  Google Scholar 

  64. Kirihata Y, Kawarabayashi T, Imanishi S, Sugimoto M, Kume S. Coumestrol decreases intestinal alkaline phosphatase activity in post-delivery mice but does not affect vitamin D receptor and calcium channels in post-delivery and neonatal mice. J Reprod Dev 2008;54(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  65. Jeffrey A. Dodge, Andrew L. Glasebrook, David E. Magee, David L. Phillips, Masahiko Sato, Lord L. Short and Henry U. Bryant. Environmental Estrogens: Effects on Cholesterol lowering and bone in the oovariectomized rat. J Steroid Biochem Mol Biol 1996;59(2): 155–161.

    Article  Google Scholar 

  66. Racine NM, Watras AC, Carrel AL, Allen DB, McVean JJ, Clark RR, O’Brien AR, O’Shea M, Scott CE, Schoeller DA. Effect of conjugated linoleic acid on body fat accretion in overweight or obese children. Am J Clin Nutr 2010;91:1157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nagao K, and Yanagita T. Conjugated fatty acids in food and their health benefits, journal of bioscience and bioengineering. J Biosci Bioeng 2005;100(2):152–7.

    Article  CAS  PubMed  Google Scholar 

  68. Hamouda AF, Shaban NZ. Effects of some pyrimidine derivatives and pomegranate juice on male rat kidney injuries induced by diethylnitrosamine and carbon tetrachloride. Biol Chem Res 2015;215:215–229.

    Google Scholar 

  69. Mosca L, Collins P, Herrington DM, Mendelsohn ME, Pasternak RC, Robertson RM et al. Hormone replacement therapy and cardiovascular disease: A Statement for Healthcare Professionals from the American Heart Association. Circulation 2001;104:499–503.

    Article  CAS  PubMed  Google Scholar 

  70. Mahajan A, Tandon VR, Sharma S. Gout and Menopause. Jk science 2007;9(1) 50–52.

    Google Scholar 

  71. Renoux C, Dell’Aniello S, Suissa S. Hormone replacement therapy and the risk of venous thromboembolism: a population-based study. J Thromb Haemost 2010;8(5):979–86.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Z. Shaban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaban, N.Z., Talaat, I.M., Elrashidy, F.H. et al. Therapeutic role of Punica granatum (pomegranate) seed oil extract on bone turnover and resorption induced in ovariectomized rats. J Nutr Health Aging 21, 1299–1306 (2017). https://doi.org/10.1007/s12603-017-0884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-017-0884-5

Key words

Navigation