Skip to main content
Log in

Association between dietary sodium intake and cognitive function in older adults

  • Published:
The journal of nutrition, health & aging

Abstract

Objective

To examine the association of dietary sodium intake with cognitive function in community-dwelling older adults.

Design

Cross-sectional study.

Setting

Southern California community.

Participants

White men (n=373) and women (n=552), aged 50-96 years from the Rancho Bernardo Study, a longitudinal study of cardiovascular disease risk factors and healthy aging.

Measurements

During the 1992-1996 research clinic visit, a food frequency questionnaire was used to determine daily sodium intake; cognitive function was assessed with Trails Making Test, part B (Trails B), Mini-Mental State Exam (MMSE), and Verbal Fluency Test (VFT); and medical, clinical and demographic information was obtained. Linear regression was used to assess the association between calorie-adjusted sodium intake and cognitive test scores with adjustment for demographic, behavioral and health measures. Logistic regression examined the odds of having cognitive impairment by sodium intake.

Results

Lower sodium intake was associated with poorer performance on Trails B (p=0.008) and MMSE (p=0.003) after controlling for age, sex, and education. Associations did not differ by sex, but there was a significant interaction by age for the Trails B: older (≥80 years), but not younger, adults showed worse performance with lower sodium intake (p=0.03). Associations remained significant after additional adjustment for smoking, alcohol intake, exercise, body weight, cardiovascular risk factors, kidney function, diuretic medication use, and diet quality. Lower daily sodium intake was associated with increased odds of cognitive impairment on the MMSE (score < 26; OR per SD decrease = 1.12, 95% CI 1.08, 1.16).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table 1
Figure 1
Figure 2
Table 2

Similar content being viewed by others

References

  1. Colby SL, Ortman JM. Projections of the size and composition of the U.S. population: 2014 to 2060. Washington, D.C.: U.S. Census Bureau, 2014.

    Google Scholar 

  2. Smith PJ, Blumenthal JA. Dietary factors and cognitive decline. J Prev Alz Dis. 2016;3(1):53–64.

    CAS  Google Scholar 

  3. Liu YZ, Chen JK, Li ZP, Zhao T, Ni M, Li DJ, Jiang CL, Shen FM. High-salt diet enhances hippocampal oxidative stress and cognitive impairment in mice. Neurobiol Learn Mem. 2014;114:10–5.

    Article  CAS  PubMed  Google Scholar 

  4. Chugh G, Asghar M, Patki G, Bohat R, Jafri F, Allam F, Dao AT, Mowrey C, Alkadhi K, Salim S. A high-salt diet further impairs age-associated declines in cognitive, behavioral, and cardiovascular functions in male Fischer brown Norway rats. J Nutr. 2013;143(9):1406–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fiocco AJ, Shatenstein B, Ferland G, Payette H, Belleville S, Kergoat MJ, Morais JA, Greenwood CE. Sodium intake and physical activity impact cognitive maintenance in older adults: the NuAge Study. Neurobiol Aging. 2012;33(4):829 e21-8.

    Google Scholar 

  6. Haring B, Wu C, Coker LH, Seth A, Snetselaar L, Manson JE, Rossouw JE, Wassertheil-Smoller S. Hypertension, Dietary Sodium, and Cognitive Decline: Results from the Women’s Health Initiative Memory Study. Am Journal Hypertension. 2016;29(2):202–16.

    Article  Google Scholar 

  7. Cohen HW, Hailpern SM, Alderman MH. Sodium intake and mortality follow-up in the Third National Health and Nutrition Examination Survey (NHANES III). J Gen Intern Med. 2008;23(9):1297–302.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567.

  9. Institute of Medicine (U.S.). Committee on Strategies to Reduce Sodium Intake., Henney JE, Taylor CL, Boon CS. Strategies to reduce sodium intake in the United States. Washington, D.C.: National Academies Press; 2010.

  10. Veglio F, Paglieri C, Rabbia F, Bisbocci D, Bergui M, Cerrato P. Hypertension and cerebrovascular damage. Atherosclerosis. 2009;205(2):331–41.

    Article  CAS  PubMed  Google Scholar 

  11. Manolio TA, Olson J, Longstreth WT. Hypertension and cognitive function: pathophysiologic effects of hypertension on the brain. Curr Hypertens Rep. 2003;5(3):255–61.

    Article  PubMed  Google Scholar 

  12. Tangney CC, Li H, Wang Y, Barnes L, Schneider JA, Bennett DA, Morris MC. Relation of DASH-and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology. 2014;83(16):1410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wengreen H, Munger RG, Cutler A, Quach A, Bowles A, Corcoran C, Tschanz JT, Norton MC, Welsh-Bohmer KA. Prospective study of Dietary Approaches to Stop Hypertension-and Mediterranean-style dietary patterns and age-related cognitive change: the Cache County Study on Memory, Health and Aging. Am J Clin Nutr. 2013;98(5):1263–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. Fish consumption and cognitive decline with age in a large community study. Arch Neurol. 2005;62(12):1849–53.

    Article  PubMed  Google Scholar 

  15. Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. Associations of vegetable and fruit consumption with age-related cognitive change. Neurology. 2006;67(8):1370–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol. 1997;42(5):776–82.

    Article  CAS  PubMed  Google Scholar 

  17. Kalmijn S, van Boxtel MP, Ocke M, Verschuren WM, Kromhout D, Launer LJ. Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology. 2004;62(2):275–80.

    Article  CAS  PubMed  Google Scholar 

  18. Berti V, Murray J, Davies M, Spector N, Tsui WH, Li Y, Williams S, Pirraglia E, Vallabhajosula S, McHugh P, Pupi A, de Leon MJ, Mosconi L. Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively normal individuals. J Nutr Health Aging. 2015;19(4):413–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Afsar B. The relationship between cognitive function, depressive behaviour and sleep quality with 24-h urinary sodium excretion in patients with essential hypertension. High Blood Press Cardiovasc Prev. 2013;20(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  20. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol. 1992;135(10):1114–26.

    Article  CAS  PubMed  Google Scholar 

  21. Fung TT, Rexrode KM, Mantzoros CS, Manson JE, Willett WC, Hu FB. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation. 2009;119(8):1093–100.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Borkowski J, Benton AL, Spreen O. Word fluency and brain damage. Neuropsychologia. 1967;5:135–40.

    Article  Google Scholar 

  23. Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc. 1992;40(9):922–35.

    Article  CAS  PubMed  Google Scholar 

  24. Reitan R. Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills. 1958;8:271–6.

    Article  Google Scholar 

  25. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71..

    Article  CAS  PubMed  Google Scholar 

  26. The hypertension detection and follow-up program: Hypertension detection and follow-up program cooperative group. Prev Med. 1976;5(2):207–15.

    Article  Google Scholar 

  27. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502. PubMed PMID: 4337382.

    CAS  PubMed  Google Scholar 

  28. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol. 1986;124(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  29. O’Bryant SE, Humphreys JD, Smith GE, Ivnik RJ, Graff-Radford NR, Petersen RC, Lucas JA. Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol. 2008;65(7):963–7.

    PubMed  PubMed Central  Google Scholar 

  30. Institute of Medicine (U.S.). Committee on the Consequences of Sodium Reduction in Populations, Strom BL, Yaktine AL, Oria M, Institute of Medicine (U.S.). Food and Nutrition Board, Institute of Medicine (U.S.). Board on Population Health and Public Health Practice. Sodium intake in populations: assessment of evidence. Washington, D.C.: The National Academies Press; 2013.

    Google Scholar 

  31. Cook NR. Salt intake, blood pressure and clinical outcomes. Curr Opin Nephrol Hypertens. 2008;17(3):310–4.

    Article  PubMed  Google Scholar 

  32. Stamler J. The INTERSALT Study: background, methods, findings, and implications. Am J Clin Nutr. 1997;65(2 Suppl):626S-42S.

    Google Scholar 

  33. Patel SM, Cobb P, Saydah S, Zhang X, de Jesus JM, Cogswell ME. Dietary sodium reduction does not affect circulating glucose concentrations in fasting children or adults: findings from a systematic review and meta-analysis. J Nutr. 2015;145(3):505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alderman MH, Madhavan S, Ooi WL, Cohen H, Sealey JE, Laragh JH. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N Engl J Med. 1991;324(16):1098–104.

    Article  CAS  PubMed  Google Scholar 

  35. Grassi G, Dell’Oro R, Seravalle G, Foglia G, Trevano FQ, Mancia G. Short-and long-term neuroadrenergic effects of moderate dietary sodium restriction in essential hypertension. Circulation. 2002;106(15):1957–61.

    Article  CAS  PubMed  Google Scholar 

  36. O’Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, Yan H, Lee SF, Mony P, Devanath A, Rosengren A, Lopez-Jaramillo P, Diaz R, Avezum A, Lanas F, Yusoff K, Iqbal R, Ilow R, Mohammadifard N, Gulec S, Yusufali AH, Kruger L, Yusuf R, Chifamba J, Kabali C, Dagenais G, Lear SA, Teo K, Yusuf S, Investigators P. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014;371(7):612–23.

    Article  PubMed  Google Scholar 

  37. Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G. Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med. 2006;119(1):71 e1-8.

    Google Scholar 

  38. Caird FI, Andrews GR, Kennedy RD. Effect of posture on blood pressure in the elderly. Br Heart J. 1973;35(5):527–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lavizzo-Mourey R, Johnson J, Stolley P. Risk factors for dehydration among elderly nursing home residents. J Am Geriatr Soc. 1988;36(3):213–8.

    Article  CAS  PubMed  Google Scholar 

  40. Fulop T, Jr., Worum I, Csongor J, Foris G, Leovey A. Body composition in elderly people. I. Determination of body composition by multiisotope method and the elimination kinetics of these isotopes in healthy elderly subjects. Gerontology. 1985;31(1):6–14.

    PubMed  Google Scholar 

  41. Rolls BJ, Phillips PA. Aging and disturbances of thirst and fluid balance. Nutr Rev. 1990;48(3):137–44.

    Article  CAS  PubMed  Google Scholar 

  42. Nakayama M, Tomiyama H, Kuwajima I, Saito T, Hokama Y, Fujii Y, Shimizu T, Nakayama T, Yamashina A, Aizawa Y. Low salt intake and changes in serum sodium levels in the combination therapy of low-dose hydrochlorothiazide and angiotensin II receptor blocker. Circ J. 2013;77(10):2567–72.

    Article  CAS  PubMed  Google Scholar 

  43. Feskanich D, Rimm EB, Giovannucci EL, Colditz GA, Stampfer MJ, Litin LB, Willett WC. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc. 1993;93(7):790–6.

    Article  CAS  PubMed  Google Scholar 

  44. Cobb LK, Anderson CA, Elliott P, Hu FB, Liu K, Neaton JD, Whelton PK, Woodward M, Appel LJ, American Heart Association Council on L, Metabolic H. Methodological issues in cohort studies that relate sodium intake to cardiovascular disease outcomes: a science advisory from the American Heart Association. Circulation. 2014;129(10):1173–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni M. Rush.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rush, T.M., Kritz-Silverstein, D., Laughlin, G.A. et al. Association between dietary sodium intake and cognitive function in older adults. J Nutr Health Aging 21, 276–283 (2017). https://doi.org/10.1007/s12603-016-0766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-016-0766-2

Key words

Navigation