Skip to main content
Log in

Beneficial and Safety Properties of a Corynebacterium vitaeruminis Strain Isolated from the Cow Rumen

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Corynebacterium vitaeruminis MRU4 was isolated from the cow rumen and was differentiated from other isolates by rep-PCR and RAPD and identified by 16S rRNA sequencing. This strain presented higher survival rates for low pH and bile salts treatments, and it was able to survive and multiply in simulated gastric and intestinal environments. C. vitaeruminis MRU4 had a 53.2% auto-aggregation rate, 42.4% co-aggregation rate with Listeria monocytogenes Scott A, 41.6% co-aggregation rate with Enterococcus faecalis ATCC 19443, 10.0% co-aggregation rate with Lactobacillus sakei ATCC 15521, and 98.2% cell surface hydrophobicity rate. PCR analysis showed the presence of EFTu and map genes. The strain possessed positive results for deconjugation of bile salts (taurocholic acid, taurodeoxycholic acid, glycocholic acid, and glycodeoxycholic acid) and positive results for β-galactosidase activity and lactose assimilation activity (glucose of 8.15 ± 0.01 CFU/ml and lactose of 9.24 ± 0.02 CFU/ml). No virulence was observed by phenotypical tests. C. vitaeruminis MRU4 was resistant to oxacillin, gentamicin, erythromycin, clindamycin, sulfa/trimethoprim, and rifampicin by the disc diffusion method and showed resistance just for vancomycin by the Etest® strips test. The strain was negative for 50 tested virulence and resistance genes based on performed PCR. Based on our knowledge, this is the first report regarding the beneficial potential of one C. vitaeruminis strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Ahire JJ, Mokashe NU, Patil HJ, Chaudhari B (2013) Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6. J Food Sci Technol 50(1):26–34

    Article  CAS  Google Scholar 

  2. Dimitrellou D, Kandylis P, Petrović T, Dimitrijević-Branković S, Lević S, Nedović V, Kourkoutas Y (2016) Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT Food Sci Technol 71:169–174. doi:10.1016/j.lwt.2016.03.007

    Article  CAS  Google Scholar 

  3. Dobinson HC, Anderson TP, Chambers ST, Doogue MP, Seaward L, Werno AM (2015) Antimicrobial treatment options for granulomatous mastitis caused by Corynebacterium species. J Clin Microbiol 53(9):2895–2899. doi:10.1128/jcm.00760-15

    Article  CAS  Google Scholar 

  4. Al-Dilaimi A, Albersmeier A, Kalinowski J, Rückert C (2014) Complete genome sequence of Corynebacterium vitaeruminis DSM 20294 T, isolated from the cow rumen as a vitamin B producer. J Biotechnol 189:70–71. doi:10.1016/j.jbiotec.2014.08.036

    Article  CAS  Google Scholar 

  5. Bechdel SI, Honeywell HE, Dutcher RA, Knutsen MH (1928) Synthesis of vitamin B in the rumen of the cow. J Biol Chem 80(1):231–238

    CAS  Google Scholar 

  6. Argyri AA, Zoumpopoulou G, Karatzas KG, Tsakalidou E, Nychas GE, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33(2):282–291. doi:10.1016/j.fm.2012.10.005

    Article  CAS  Google Scholar 

  7. Todorov SD, Wachsman M, Tomé E, Dousset X, Destro MT, Dicks LMT, Franco BDGM, Vaz-Velho M, Drider D (2010) Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol 27(7):869–879. doi:10.1016/j.fm.2010.05.001

  8. Basic local alignment search tool (2015) http://www.ncbi.nlm.nih.gov/BLAST. Accessed 2015, August 25

  9. dos Santos KMO, Vieira ADS, Buriti FCA, do Nascimento JCF, de Melo MES, Bruno LM, Borges MF, Rocha CRC, Lopes ACS, Franco BDGM, Todorov SD (2015) Artisanal Coalho cheeses as source of beneficial Lactobacillus plantarum and Lactobacillus rhamnosus strains. Dairy Science & Technology 95(2):209–230

  10. Ramiah K, van Reenen CA, Dicks LMT (2007) Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR. Int J Food Microbiol 116(3):405–409. doi:10.1016/j.ijfoodmicro.2007.02.011

    Article  CAS  Google Scholar 

  11. Pelinescu D, Chifiriuc MC, Ditu LM, Sarbu I, Bleotu C, Vassu I, Stocia I, Lazar V, Corcionivoschi N, Sasarman E (2011) Selection and characterization of the probiotic potential of some lactic acid bacteria isolated from infant feces. Romanian Biotechnological Letters 16(3):6178–6189

    Google Scholar 

  12. Barbosa J, Gibbs PA, Teixeira P (2010) Virulence factors among enterococci isolated from traditional fermented meat products produced in the north of Portugal. Food Control 21(5):651–656. doi:10.1016/j.foodcont.2009.10.002

    Article  Google Scholar 

  13. Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53(1):33–41. doi:10.1016/S0168-1605(99)00152-X

    Article  CAS  Google Scholar 

  14. EUCAST (2016) European Committee on Antimicrobial Susceptibility Testing. http://www.eucast.org/ast_of_bacteria/. Accessed Accessed 27 April 2016 2016

  15. Favaro L, Basaglia M, Casella S, Hue I, Dousset X, Franco BDGM, Todorov SD (2014) Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from home made white brine cheese. Food Microbiol 38:228–239

    Article  CAS  Google Scholar 

  16. Fortina MG, Ricci G, Borgo F, Manachini PL, Arends K, Schiwon K, Abajy MY, Grohmann E (2008) A survey on biotechnological potential and safety of the novel Enterococcus species of dairy origin, E. italicus. Int J Food Microbiol 123(3):204–211. doi:10.1016/j.ijfoodmicro.2008.01.014

    Article  CAS  Google Scholar 

  17. Leite AMO, Miguel MAL, Peixoto RS, Ruas-Madiedo P, Paschoalin VMF, Mayo B, Delgado S (2015) Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. J Dairy Sci 98(6):3622–3632. doi:10.3168/jds.2014-9265

    Article  CAS  Google Scholar 

  18. Caggia C, De Angelis M, Pitino I, Pino A, Randazzo CL (2015) Probiotic features of Lactobacillus strains isolated from Ragusano and Pecorino Siciliano cheeses. Food Microbiol 50:109–117. doi:10.1016/j.fm.2015.03.010

    Article  CAS  Google Scholar 

  19. Vidhyasagar V, Jeevaratnam K (2013) Evaluation of Pediococcus pentosaceus strains isolated from idly batter for probiotic properties in vitro. J Funct Foods 5(1):235–243. doi:10.1016/j.jff.2012.10.012

    Article  CAS  Google Scholar 

  20. Vinderola G, Capellini B, Villarreal F, Suárez V, Quiberoni A, Reinheimer J (2008) Usefulness of a set of simple in vitro tests for the screening and identification of probiotic candidate strains for dairy use. LWT Food Sci Technol 41(9):1678–1688. doi:10.1016/j.lwt.2007.10.008

    Article  CAS  Google Scholar 

  21. dos Santos KMO, Vieira ADS, Salles HO, Oliveira JS, Rocha CRC, Borges MF, Bruno LM, Franco BDGM, Todorov SD (2015) Safety, beneficial and technological properties of Enterococcus faecium isolated from Brazilian cheeses. Braz J Microbiol 46(1):237–249. doi:10.1590/s1517-838246120131245

    Article  Google Scholar 

  22. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72(3):1729–1738. doi:10.1128/aem.72.3.1729-1738.2006

    Article  CAS  Google Scholar 

  23. Vankerckhoven V, Huys G, Vancanneyt M, Vael C, Klare I, Romond M, Entenza JM, Moreillon P, Wind RD, Knol J, Wiertz E, Pot B, Vaughan EE, Kahlmeter G, Goossens H (2008) Biosafety assessment of probiotics used for human consumption: recommendations from the EU-PROSAFE project. Trends Food Sci Technol 19(2):102–114. doi:10.1016/j.tifs.2007.07.013

    Article  CAS  Google Scholar 

  24. Pisano MB, Viale S, Conti S, Fadda ME, Deplano M, Melis MP, Deiana M, Cosentino S (2014) Preliminary evaluation of probiotic properties of Lactobacillus strains isolated from sardinian dairy products. Biomed Res Int 2014:9. doi:10.1155/2014/286390

    Article  Google Scholar 

  25. Han J, Chen D, Li S, Li X, Zhou W, Zhang B, Jia Y (2015) Antibiotic susceptibility of potentially probiotic Lactobacillus strains. Italian Journal of Food Science 27(3):8. doi:10.14674/1120-1770/ijfs.v270

    Google Scholar 

  26. EFSA (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Panel on Additives and Products or Substances used in Animal Feed, vol 10. EFSA Journal. doi:10.2903/j.efsa.2012.2740

Download references

Acknowledgements

The authors are thankful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Nero.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, M., Castilho, N.P.A., Todorov, S.D. et al. Beneficial and Safety Properties of a Corynebacterium vitaeruminis Strain Isolated from the Cow Rumen. Probiotics & Antimicro. Prot. 9, 157–162 (2017). https://doi.org/10.1007/s12602-017-9263-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9263-0

Keywords

Navigation