Skip to main content

Advertisement

Log in

Antimicrobial Effect of Lactobacillus reuteri on Cariogenic Bacteria Streptococcus gordonii, Streptococcus mutans, and Periodontal Diseases Actinomyces naeslundii and Tannerella forsythia

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are well known for their beneficial effects on human health in the intestine and immune system; however, there are few studies on the impact they can generate in oral health. The aim of this study was to test and compare in vitro antimicrobial activity of L. reuteri on pathogenic bacteria involved in the formation of dental caries: S. mutans, S. gordonii, and periodontal disease: A. naeslundii and T. forsythia. Also, we determined the growth kinetics of each bacterium involved in this study. Before determining the antimicrobial action of L. reuteri on cariogenic bacteria and periodontal disease, the behavior and cell development time of each pathogenic bacterium were studied. Once the conditions for good cell growth of each of selected pathogens were established according to their metabolic requirements, maximum exponential growth was determined, this being the reference point for analyzing the development or inhibition by LAB using the Kirby Bauer method. Chlorhexidine 0.12 % was positive control. L. reuteri was shown to have an inhibitory effect against S. mutans, followed by T. forsythia and S. gordonii, and a less significant effect against A. naeslundii. Regarding the effect shown by L. reuteri on the two major pathogens, we consider its potential use as a possible functional food in the prevention or treatment of oral diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Kuramitsu HK, He X, Lux R, Anderson MH, Shi W (2007) Interspecies Interactions within oral microbial communities. Microbiol Mol Biol Rev 71:653–670. doi:10.1128/MMBR.00024-07

    Article  CAS  Google Scholar 

  2. Milward MR, Chapple ILC (2013) The role of diet in periodontal disease. Clin Dent Health 52:18–21

    Google Scholar 

  3. Hendrickson EL, Wang T, Dickinson BC, Whitmore SE, Wright CJ, Lamont RJ, Hackett M (2012) Proteomics of Streptococcus gordonii within a model developing oral microbial community. BMC Microbiol 12:1–23. doi:10.1186/1471-2180-12-211

    Article  Google Scholar 

  4. Borssén E, Sundqvist G (1981) Actinomyces of infected dental root canals. Oral Surg Oral Med Oral Pathol 51:643–648. doi:10.1016/S0030-4220(81)80016-3

    Article  Google Scholar 

  5. Haffajee AD, Cugini MA, Tanner A, Pollack RP, Smith C, Kent RL, Socransky SS (1998) Subgingival microbiota in healthy, well-maintained elder and periodontitis subjects. J Clin Periodontol 25:346–353. doi:10.1111/j.1600-051X.1998.tb02454.x

    Article  CAS  Google Scholar 

  6. Macuch PJ, Tanner ACR (2000) Campylobacter species in health, gingivitis, and periodontitis. J Dent Res 79:785–792. doi:10.1177/00220345000790021301

    Article  CAS  Google Scholar 

  7. Loo CY, Corliss DA, Ganeshkumar N (2000) Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182:1374–1382. doi:10.1128/jb.182.5.1374-1382.2000

    Article  CAS  Google Scholar 

  8. Plummer C, Douglas CWI (2006) Relationship between the ability of oral streptococci to interact with platelet glycoprotein Ibα and with the salivary low-molecular-weight mucin, MG2. FEMS Immunol Med Microbiol 48:390–399. doi:10.1111/j.1574-695X.2006.00161.x

    Article  CAS  Google Scholar 

  9. Zylber LJ, Jordan HV (1982) Development of a selective medium for detection and enumeration of Actinomyces viscosus and Actinomyces naeslundii in dental plaque. J Clin Microbiol 15:253–259

  10. Lai CH, Listgarten MA, Shirakawa M, Slots J (1987) Bacteroides forsythus in adult gingivitis and periodontitis. Oral Microbiol Immun 2:152–157. doi:10.1111/j.1399-302X.1987.tb00299.x

    Article  CAS  Google Scholar 

  11. Ambalam PS, Prajapati JB, Dave JM, Nair BM, Ljungh Å, Vyas BRM (2009) Isolation and characterization of antimicrobial proteins produced by a potential probiotic strain of human Lactobacillus rhamnosus 231 and its effect on selected human pathogens and food spoilage organisms. Microb Ecol Health Dis 21. doi:10.3109/08910600903429052

  12. Brown AC, Valiere A (2004) Probiotics and medical nutrition therapy. Nutr Clin Care 7:56–68

    Google Scholar 

  13. Baldwin C, Millette M, Oth D, Ruiz MT, Luquet FM, Lacroix M (2010) Probiotic Lactobacillus acidophilus and Lactobacillus casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr Cancer 62:371–378. doi:10.1080/01635580903407197

    Article  CAS  Google Scholar 

  14. Bujňáková D, Kmeť V (2012) Functional properties of Lactobacillus strains isolated from dairy products. Folia Microbiol 57:263–267. PMCID: PMC1482314

  15. Hernandez-Mendoza A, Guzmán-de-Peña D, García HS (2009) Key role of teichoic acids on aflatoxin B1 binding by probiotic bacteria. J Appl Microbiol 107:395–403. doi:10.1111/j.1365-2672.2009.04217.x

    Article  CAS  Google Scholar 

  16. Sánchez-Maldonado AF, Schieber A, Gänzle MG (2011) Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol 111:1176–1184. doi:10.1111/j.1365-2672.2011.05141.x

    Article  Google Scholar 

  17. Connolly E (2004) Lactobacillus reuteri ATCC 55730: a clinically proven probiotic. NUTRAfoods 3:15–22

    Google Scholar 

  18. Dobrogosz WJ (2005) Enhancement of human health with Lactobacillus reuteri. NUTRAfoods 4:15–28

    CAS  Google Scholar 

  19. Savino F, Pelle E, Palumeri E, Oggero R, Miniero R (2007) Lactobacillus reuteri (American Type Culture Collection Strain 55730) versus simethicone in the treatment of infantile colic: a prospective randomized study. Pediatrics 119:124–130. doi:10.1099/mic.0.035642-0

    Article  Google Scholar 

  20. Talarico TL, Dobrogosz WJ (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33:674–679. doi:10.1128/aac.33.5.674

  21. Kang MS, Oh JS, Lee HC, Lim HS, Lee SW, Yang KH, Choi NK, Kim SM (2011) Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria. J Microbiol 49:193–199. doi:10.1007/s12275-011-0252-9

    Article  CAS  Google Scholar 

  22. Çaglar E, Cildir SK, Ergeneli S, Sandalli N, Twetman S (2006) Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol Scand 64:314–318. doi:10.1080/00016350600801709

    Article  Google Scholar 

  23. Nikawa H, Makihira S, Fukushima H, Nishimura H, Ozaki Y, Ishida K, Darmawan S, Hamada T, Hara K, Matsumoto A, Takemoto T, Aimi R (2004) Lactobacillus reuteri in bovine milk fermented decreases the oral carriage of mutans streptococci. Int J Food Microbiol 95:219–223. doi:10.1016/j.ijfoodmicro.2004.03.006

    Article  CAS  Google Scholar 

  24. Beena-Divya J, Kulangara-Varsha K, Madhavan-Nampoothiri K, Ismail B, Pandey A (2012) Probiotic fermented foods for health benefits. Eng Life Sci 12:377–390. doi:10.1002/elsc.201100179

    Article  CAS  Google Scholar 

  25. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  Google Scholar 

  26. Bian L, Molan AL, Maddox I, Shu Q (2011) Antimicrobial activity of Lactobacillus reuteri DPC16 supernatants against selected food borne pathogens. World J Microbiol Biotechnol 27:991–998. doi:10.1007/s11274-010-0543-z

    Article  Google Scholar 

  27. Tobajas M, Mohedano AF, Casas JA, Rodríguez JJ (2007) A kinetic study of reuterin production by Lactobacillus reuteri PRO 137 in resting cells. Biochem Eng J 35:218–225. doi:10.1016/j.bej.2007.01.017

    Article  CAS  Google Scholar 

  28. Beckers HJA, van der Hoeven JS (1982) Growth rates of Actinomyces viscosus and Streptococcus mutans during early colonization of tooth surfaces in gnotobiotic rats. Infect Immun 35:583–587

  29. Gilmore KS, Srinivas P, Akins DR, Hatter KL, Gilmore MS (2003) Growth, development and gene expression in a persistent Streptococcus gordonii biofilm. Infect Immun 71:4759–4766. doi:10.1128/iai.71.8.4759-4766.2003

    Article  CAS  Google Scholar 

  30. Asikainen S (2006). In vitro growth inhibition of periodontitis-associated bacteria by Lactobacillus reuteri. BioGaia Report EC034/R&D Poster presented at: Anaerobe 2006 Boise, Idaho, USA. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-11227

  31. Holz C, Alexander C, Balcke C, Moré M, Auinger A, Bauer M, Junker L, Grünwald J, Lang C, Pompejus M (2013) Lactobacillus paracasei DSMZ16671 reduces Mutans streptococci: a short-term pilot study. Probiotics Antimicrob Prot 5:259–263. doi:10.1007/s12602-013-9148-9

    Article  Google Scholar 

  32. Chuang LC, Huang CS, Ou-Yang LW, Lin SY (2011) Probiotic Lactobacillus paracasei effect on cariogenic bacterial flora. Clin Oral Invest 15:471–476. doi:10.1007/s00784-010-0423-9

    Article  Google Scholar 

  33. Hsu CH, Chen YH, Wang YY, Lai DY, Hsieh FC (2008) Lactobacillus paracasei-containing product. Google Patents. http://www.google.com/patents/US20080118444

  34. Schaefer L, Auchtung TA, Hermans KE, Whitehead D, Borhan B, Britton RA (2010) The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 156:1589–1599. doi:10.1099/mic.0.035642-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly funded by a Grant from the Ministry of Public Education of Mexico, under the PROMEP program, Registration No. UANL-PTC-367 and by the Support Program for Scientific and Technological Research (PAICYT-UANL) No. CN 802-11. We particularly thank Suarez-Martínez VR for technical assistance in managing the anaerobic chamber. Dr. Med. Cardenas-Estrada E (CIDICS), who performed the statistical analysis of this study.

Conflict of interest

M. L. Baca-Castañón, M. A. De la Garza-Ramos, A. G. Alcázar-Pizaña, Y. Grondin, A. Coronado-Mendoza, R. I. Sánchez-Najera, E. Cárdenas-Estrada, C. E. Medina-De la Garza and E. Escamilla-García declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erandi Escamilla-García.

Additional information

Magda Lorena Baca-Castañón and Myriam Angélica De la Garza-Ramos are first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baca-Castañón, M.L., De la Garza-Ramos, M.A., Alcázar-Pizaña, A.G. et al. Antimicrobial Effect of Lactobacillus reuteri on Cariogenic Bacteria Streptococcus gordonii, Streptococcus mutans, and Periodontal Diseases Actinomyces naeslundii and Tannerella forsythia . Probiotics & Antimicro. Prot. 7, 1–8 (2015). https://doi.org/10.1007/s12602-014-9178-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-014-9178-y

Keywords

Navigation