Skip to main content

Advertisement

Log in

Antiviral Potential of Lactic Acid Bacteria and Their Bacteriocins

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Emerging resistance to antiviral agents is a growing public health concern worldwide as it was reported for respiratory, sexually transmitted and enteric viruses. Therefore, there is a growing demand for new, unconventional antiviral agents which may serve as an alternative to the currently used drugs. Meanwhile, published literature continues shedding the light on the potency of lactic acid bacteria (LAB) and their bacteriocins as antiviral agents. Health-promoting LAB probiotics may exert their antiviral activity by (1) direct probiotic–virus interaction; (2) production of antiviral inhibitory metabolites; and/or (3) via stimulation of the immune system. The aim of this review was to highlight the antiviral activity of LAB and substances they produce with antiviral activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. FAO/WHO (2002) Joint working group report on guidelines for the evaluation of probiotics in food. London, Ontario, Canada

  2. Villena J, Oliveira ML, Ferreira P, Salva S, Alvarez S (2011) Lactic acid bacteria in the prevention of pneumococcal respiratory infection: future opportunities and challenges. Int Immunopharmacol 11:1633–1645

    Article  CAS  Google Scholar 

  3. Liu SQ (2003) Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int J Food Microbiol 83:115–131

    Article  CAS  Google Scholar 

  4. Belhadj H, Harzallah D, Khennouf S, Dahamna S, Bouharati S, Baghiani A (2010) Isolation, identification and antimicrobial activity of lactic acid bacteria from Algerian honeybee collected pollen. Acta Hort (ISHS) 854:51–58

    CAS  Google Scholar 

  5. Mercenier A, Pavan S, Pot B (2003) Probiotics as biotherapeutic agents. Curr Pharm Des 9:175–191

  6. Harzallah D, Belhadj H (2013) Lactic acid bacteria as probiotics: characteristics, selection criteria and role in immunomodulation of human GI muccosal barrier Chapter 8. Book: 198 Lactic Acid Bacteria – R & D for Food, Health and Livestock Purposes, Inteck edition

  7. Lakshmi B, Viswanath B, Sai Gopal DV (2013) Probiotics as antiviral agents in shrimp aquaculture. J Pathog 2013:424123. doi:10.1155/2013/424123

  8. Seo BJ, Rather IA, Kumar VJ, Choi UH, Moon MR, Lim JH, Park YH (2012) Evaluation of Leuconostoc mesenteroides YML003 as a probiotic against low-pathogenic avian influenza (H9N2) virus in chickens. J Appl Microbiol 113:163–171

    Article  CAS  Google Scholar 

  9. Guarner F, Schaafsma GJ (1998) Probiotics. Int J Food Microbiol 17:237–238

    Article  Google Scholar 

  10. Botić T, Klingberg TD, Weingartl H et al (2007) A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria. Int J Food Microbiol 115:227–234

    Article  Google Scholar 

  11. Wang Z, Chai W, Burwinkel M, Twardziok S, Wrede P, Palissa C, Esch B, Schmid MFG (2013) Inhibitory influence of Enterococcus faecium on the propagation of swine influenza a virus in vitro. PLoS One 8:e53043

    Article  CAS  Google Scholar 

  12. Al Kassaa I, Hamze M, Hober D et al (2014) Identification of vaginal lactobacilli with potential probiotic properties isolated from women in North Lebanon. Microb Ecol 67:722–734

    Article  Google Scholar 

  13. Kawashima T, Kyoko H, Akemi K, Megumi K et al (2011) Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses. Int Immunopharmacol 11:2017–2024

    Article  CAS  Google Scholar 

  14. Klebanoff SJ, Coombs RW (1991) Viricidal effect of Lactobacillus acidophilus on human immunodeficiency virus type 1: possible role in heterosexual transmission. J Exp Med 174:289–292

    Article  CAS  Google Scholar 

  15. Conti C, Malacrino C, Mastromarino P (2009) Inhibition of herpes simplex virus type 2 by vaginal lactobacilli. J Physiol Pharmacol 6:19–26

    Google Scholar 

  16. Martin LS, McDougal JS, Loskoski SL (1985) Disinfection and inactivation of the human lymphotropic virus type III/lymphadenopathy-associated virus. J Infect Dis 152:400–403

    Article  CAS  Google Scholar 

  17. Martin V, Maldonado A, Fernandez L, Rodriguez JM, Connor RI (2010) Inhibition of human immunodeficiency virus type 1 by lactic acid bacteria from human breastmilk. Breastfeed Med 5:153–158

    Article  Google Scholar 

  18. Tuyama AC, Cheshenko N, Carlucci MJ, Li JH, Goldberg CL, Waller DP, Anderson RA, Profy AT, Klotman ME, Keller MJ, Herold BC (2006) Acidform inactivates herpes simplex virus and prevents genital herpes in a mouse model: optimal candidate for microbicide combinations. J Infect Dis 194:795–803

    Article  Google Scholar 

  19. Mastromarino P, Cacciotti F, Masci A, Mosca L (2011) Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: role of cell wall associated components. Anaerobe 17:334–336

    Article  Google Scholar 

  20. Hill JA, Anderson DJ (1992) Human vaginal leukocytes and the effects of vaginal fluid lymphocyte and macrophage defense functions. Am J Obstet Gynecol 166:720–726

    Article  CAS  Google Scholar 

  21. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106

    Article  CAS  Google Scholar 

  22. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86

    Article  CAS  Google Scholar 

  23. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  Google Scholar 

  24. Abee T (1995) Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol Lett 129:1–10

    Article  CAS  Google Scholar 

  25. Abee T, Krockel L, Hill C (1995) Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol 28:169–185

    Article  CAS  Google Scholar 

  26. Moll GN, Konings WN, Driessen AJM (1999) Bacteriocins: mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek 76:185–198

    Article  CAS  Google Scholar 

  27. Drider D, Rebuffat S (2011) Prokaryotic antimicrobial peptides: from genes to applications. Springer, New York, ISBN 9781441976918

  28. Humaira Q, Sadia S, Ahmed S, Ajaz Rasool S (2006) Coliphage hsa as a model for antiviral studies/spectrum by some indigenous bacteriocin like inhibitory substances (BLIS). Pak J Pharma Sci 19:182–187

    Google Scholar 

  29. Saeed S, Rasool RA, Ahmad S, Zaidi SZ, Rehmani S (2007) Antiviral activity of Staphylococcin 188: a purified bacteriocin like inhibitory substance isolated from Staphylococcus aureus AB188. Res J Microbiol 2:796–806

    Article  CAS  Google Scholar 

  30. Todorov SD, Wachsman M, Tomé E, Dousset X, Destro MT, Dicks LM, Franco BD, Vaz-Velho M, Drider D (2010) Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol 27:869–879

    Article  CAS  Google Scholar 

  31. Wachsman MB, Farias ME, Takeda E, Sesma F, De Ruiz Holgado AP, de Torres RA, Coto CE (1999) Antiviral activity of enterocin CRL against herpes virus. Int J Antimicrob Agents 12:293–299

    Article  CAS  Google Scholar 

  32. Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LMT (2005) An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int J Antimicrob Agents 25:508–513

    Article  CAS  Google Scholar 

  33. Wachsman MB, Castilla V, De Ruiz Holgado AP, de Torres RA, Sesma F, Coto CE (2003) Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antivir Res 58:17–24

    Article  CAS  Google Scholar 

  34. Emiliano S, Lucila S, Fernando S (2007) Short peptides derived from the NH2-terminus of subclass IIa bacteriocin enterocin CRL35 show antimicrobial activity. J Antimicrob Chemother 59:1102–1108

    Article  Google Scholar 

  35. Ishibashi N, Himeno K, Fujita K, Masuda Y, Perez RH, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K (2012) Purification and characterization of multiple bacteriocins and an inducing peptide produced by Enterococcus faecium NKR-5-3 from Thai fermented fish. Biosci Biotechnol Biochem 76:947–953

    Article  CAS  Google Scholar 

  36. Férir G, Petrova M, Andrei G, Huskens D, Hoorelbeke B (2013) The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One 8:e64010

    Article  Google Scholar 

  37. Serkedjieva J, Danova S, Ivanova I (2000) Antiinfluenza virus activity of a bacteriocin produced by Lactobacillus delbrueckii. Appl Biochem Biotechnol 88:122–129

    Google Scholar 

  38. Lehtoranta L, Pitkäranta A, Korpela R (2014) Probiotics in respiratory virus infections. Eur J Clin Microbiol Infect Dis. doi:10.1007/s10096-014-2086-y

  39. Guillemard E, Tondu F, Lacoin F, Schrezenmeir J (2010) Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br J Nutr 103:58–68

    Article  CAS  Google Scholar 

  40. Maeda N, Nakamura R, Hirose Y, Murosaki S, Yamamoto Y, Kase T, Yoshikai Y (2009) Oral administration of heat-killed Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int Immunopharmacol 9:1122–1125

    Article  CAS  Google Scholar 

  41. Boge T, Remigy M, Vaudaine S, Tanguy J, Bourdet-Sicard R, van der Werf S (2009) A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials. Vaccine 27:5677–5684

    Article  CAS  Google Scholar 

  42. Olivares M, Diaz-Ropero MP, Sierra S, Lara-Villoslada F, Fonolla J, Navas M, Rodriguez JM, Xaus J (2007) Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition 23:254–260

    Article  CAS  Google Scholar 

  43. de Vrese M, Winkler P, Rautenberg P, Harder T, Noah C, Laue C, Ott S, Hampe J, Schreiber S, Heller K, Schrezenmeir J (2006) Probiotic bacteria reduced duration and severity but not the incidence of common cold episodes in a double blind, randomized, controlled trial. Vaccine 24:6670–6674

    Article  Google Scholar 

  44. Rautava S, Salminen S, Isolauri E (2009) Specific probiotics in reducing the risk of acute infections in infancy a randomised, double-blind, placebo-controlled study. Br J Nutr 101:1722–1726

    Article  CAS  Google Scholar 

  45. Leyer GJ, Li S, Mubasher ME, Reifer C, Ouwehand AC (2009) Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 124:e172–e179

    Article  Google Scholar 

  46. Chiba E, Tomosada Y, Guadalupe MVP, Salva S (2013) Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection. Int Immunopharmacol 17:373–382

    Article  CAS  Google Scholar 

  47. Salva S, Nuñez M, Villena J, Ramón A, Font G, Alvarez S (2011) Development of a fermented goats’ milk containing Lactobacillus rhamnosus: in vivo study of health benefits. J Sci Food Agric 91:2355–2362

    Article  CAS  Google Scholar 

  48. Clancy R (2003) Immunobiotics and the probiotic evolution. FEMS Immunol Med Microbiol 38:9–12

    Article  CAS  Google Scholar 

  49. Yasui H, Kiyoshima J, Hori T (2004) Reduction of influenza virus titer and protection against influenza virus infection in infant mice fed Lactobacillus casei Shirota. Clin Diagn Lab Immunol 11:675–679

    Google Scholar 

  50. Kiso M, Takano R, Sakabe S, Katsura K, Shinya K, Uraki R (2013) Protective efficacy of orally administered, heat-killed Lactobacillus pentosus b240 against influenza A virus. Sci Rep 3:1563

    Article  Google Scholar 

  51. Fong TT, Lipp EK (2005) Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 69:357–371

    Article  CAS  Google Scholar 

  52. Farthing MJG (1989) Viruses and the gut. Smith Kline & French, Welwyn Garden City

    Google Scholar 

  53. Kocwa-Haluch R (2001) Waterborne enteroviruses as a hazard for human health. Pol J Environ Stud 10:485–487

    Google Scholar 

  54. Maragkoudakis PA, Chingwaru W, Gradisnik L, Tsakalidou E, Cencic A (2010) Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. Int J Food Microbiol 141:S91–S97

    Article  Google Scholar 

  55. Agarwal KN, Bhasin SK (2002) Feasibility studies to control acute diarrhea in children by feeding fermented milk preparations Actimel and Indian Dahi. Eur J Clin Nutr 56:S56–S59

    Article  Google Scholar 

  56. Szajewska H, Mrukowicz JZ (2001) Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials. J Pediatr Gastroenterol Nutr 33:S17–S25

    Article  CAS  Google Scholar 

  57. Sarker SA, Sultana S, Fuchs GJ, Alam NH, Azim T, Brussow H, Hammarstrom L (2005) Lactobacillus paracasei strain ST11 has no effect on rotavirus but ameliorates the outcome of nonrotavirus diarrhea in children from Bangladesh. Pediatrics 116:e221–e228

    Article  Google Scholar 

  58. Cencic A, Chingwaru W (2010) The role of functional foods, Nutraceuticals, and food supplements in intestinal health. Nutrients 2:611–625

    Article  CAS  Google Scholar 

  59. Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carbonneil C, Levy Y (2004) Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected patients. Blood 104:3249–3256

    Article  CAS  Google Scholar 

  60. UNAIDS, report on the global HIV/AIDS Epidemic 2000_: Executive Summary, UNAIDS, Genova Switzerland

  61. Karim QA, Karim SSA, Frohlich JA et al (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329:1168–1174

    Article  Google Scholar 

  62. Rubab Z, Baig S, Siddiqui A, Nayeem A, Salman S, Qidwai A, Mallick R, Qidwai S (2013) Human papilloma virus—role in precancerous and cancerous oral lesions of tobacco chewers. J Pak Med Assoc 63:10

    Google Scholar 

  63. Cha MK, Lee DK, An HM, Lee SW, Shin SH, Kwon JH, Kim KJ, Ha NJ (2012) Antiviral activity of Bifidobacterium adolescentis SPM1005-A on human papillomavirus type 16. BMC Med 10:72

    Article  CAS  Google Scholar 

  64. Khania S, Motamedifara M, Golmoghaddam H, Hosseinic HM, Hashemizadeha Z (2012) In vitro study of the effect of a probiotic bacterium Lactobacillus rhamnosus against herpes simplex virus type 1. Braz J Infect Dis 16:129–135

    Article  Google Scholar 

  65. Jaïdane H, Hober D (2008) Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes. Diabetes Metab 34:537–548

    Article  Google Scholar 

  66. Hober D, Sauter P (2010) Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 6:279–289

    Article  Google Scholar 

  67. Qureshi TA, Mirbahar KB, Samo MU, Soomro NM, Solangi AA, Memon A (2006) Clinical study of experimentally induced anaphylactic shock in goats. Int J Pharmacol 2:357–361

    Article  Google Scholar 

  68. Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R, Vanderleyden J, Balzarini J, Bartoschek S, Brönstrup M, Süssmuth RD, Schols D (2013) The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One 8:e64010

    Article  Google Scholar 

  69. Torres N, Sutyak N, Xu S, Li J, Huang Q, Sinko P (2013) Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics Antimicrob Proteins 5:26–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Delphine Caly for critical reading of the manuscript. I.A.K. received a scholar fellowship from Lille 1 University (France) and AZM Center (Lebanon) for his PhD training.

Conflict of interest

The authors declare that they do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Drider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Kassaa, I., Hober, D., Hamze, M. et al. Antiviral Potential of Lactic Acid Bacteria and Their Bacteriocins. Probiotics & Antimicro. Prot. 6, 177–185 (2014). https://doi.org/10.1007/s12602-014-9162-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-014-9162-6

Keywords

Navigation