Skip to main content
Log in

Characterization and Antilisterial Effect of Phosphatidylcholine Nanovesicles Containing the Antimicrobial Peptide Pediocin

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Encapsulation may provide increased stability and antimicrobial efficiency to bacteriocins. In this work, the antilisterial peptide pediocin was encapsulated in nanovesicles prepared from partially purified soybean phosphatidylcholine. The maintenance of antimicrobial activity and properties of free and encapsulated pediocin was observed during 13 days at 4 °C, and after this period, the encapsulated pediocin retained 50 % its initial activity. The maintenance of the bioactive properties of free and encapsulated pediocin was observed against different species of Listeria, inhibiting Listeria monocytogenes, Listeria innocua and Listeria ivanovii. The size of vesicles containing pediocin was determined by dynamic light scattering as an average of 190 nm, with little change throughout the observation period. Polydispersity index values were around 0.201 and are considered satisfactory, indicating an adequate size distribution of liposomes. The efficiency of encapsulation was 80 %. Considering these results, the protocol used was appropriate for the encapsulation of this bacteriocin. Results demonstrate the production of stable nanoparticulate material. The maintenance of the properties of pediocin encapsulated in liposomes is fundamental to prospect the stability in different conditions of the food matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arauz LJ, Jozala AF, Mazzola PG, Penna TC (2009) Nisin biotechnological production and application: a review. Trends Food Sci Technol 20:146–154

    Article  Google Scholar 

  2. Bhatti M, Veeramachaneni A, Shelef LA (2004) Factors affecting the antilisterial effect of nisin in milk. Int J Food Microbiol 97:215–219

    Article  CAS  Google Scholar 

  3. Brandelli A (2012) Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev Med Chem 12:731–741

    Article  CAS  Google Scholar 

  4. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  Google Scholar 

  5. Colas JC, Shi WS, Rao VSNM, Omri A, Mozafari MR, Singh H (2007) Microscopical investigations of nisin-loaded nanolipossomes prepared by Mozafari method and their bacterial targeting. Micron 38:841–847

    Article  CAS  Google Scholar 

  6. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  Google Scholar 

  7. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry: recent developments, risks and regulation. Trends Food Sci Technol 24:30–46

    Article  CAS  Google Scholar 

  8. Degnan AJ, Luchansky JB (1992) Influence of beef tallow and muscle on the antilisterial activity of pediocin ACH and liposome-encapsulated pediocin ACH. J Food Prot 55:552–554

    CAS  Google Scholar 

  9. Degnan AJ, Buyong N, Luchansky JB (1993) Antilisterial activity of pediocin AcH in model food systems on the presence of an emulsifier or encapsulated within liposomes. Int J Food Microbiol 18:127–138

    Article  CAS  Google Scholar 

  10. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Classe IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106

    Article  CAS  Google Scholar 

  11. Gandhi M, Chikindas ML (2007) Liseria; a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    Article  Google Scholar 

  12. Jamuna M, Jeevaratnam K (2004) Isolation and partial characterization of bacteriocins from Pediococcus species. Appl Microbiol Biotechnol 65:433–439

    Article  CAS  Google Scholar 

  13. Kopermsub P, Mayen V, Warin C (2011) Potential use of liposomes for encapsulation of nisin and EDTA and their antibacterial activity enhancement. Food Res Int 44:605–612

    Article  CAS  Google Scholar 

  14. Laridi R, Kheadr EE, Benech RO, Vuillemard JC, Lacroix C, Fliss I (2003) Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. Int Dairy J 13:325–336

    Article  CAS  Google Scholar 

  15. Lasch J, Weissig V, Brandl M (2003) Preparation of liposomes. In: Torchilin VP, Weissig V (eds) Liposomes: a practical approach. Oxford University Press, New York, pp 3–30

    Google Scholar 

  16. Malheiros PS, Micheletto YMS, Silveira NP, Brandelli A (2010) Development and characterization of phosphatidylcholine nanovesicles containing the antimicrobial peptide nisin. Food Res Int 43:1198–1203

    Article  CAS  Google Scholar 

  17. Malheiros PS, Daroit DJ, Silveira NP, Brandelli A (2010) Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiol 27:175–178

    Article  CAS  Google Scholar 

  18. Malheiros PS, Daroit DJ, Brandelli A (2010) Food applications of liposome-encapsulated antimicrobial peptides. Trends Food Sci Technol 21:284–292

    Article  Google Scholar 

  19. Malheiros PS, Sant’Anna V, Micheletto YMS, Silveira NP, Brandelli A (2011) Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes. J Nanoparticle Res 13:3545–3552

    Article  CAS  Google Scholar 

  20. Malheiros PS, Sant’Anna V, Barbosa MS, Brandelli A, Franco BDGM (2012) Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. Int J Food Microbiol 156:272–277

    Article  CAS  Google Scholar 

  21. Mayr-Harting A, Hedjes AJ, Berkeley CW (1972) Methods for studying bacteriocins. In: Norris JB, Ribbons D (eds) Methods in microbiology, vol 7. Academic Press, New York, pp 315–412

    Google Scholar 

  22. Mertins O, Sebben M, Schneider PH, Pohlmann AR, Silveira NP (2008) Characterization of soybean phosphatidylcholine purity by 1H and 31P NMR. Quim Nova 3:1856–1859

    Article  Google Scholar 

  23. Motta AS, Brandelli A (2002) Characterization of an antimicrobial peptide produced by Brevibacterium linens. J Appl Microbiol 92:63–70

    Article  CAS  Google Scholar 

  24. Motta AS, Flores FS, Souto AA, Brandelli A (2008) Antibacterial activity of a bacteriocin-like substance produced by Bacilus sp. P34 that targets the bacterial cell envelope. Antonie Van Leeuwenhoek 93:275–284

    Article  CAS  Google Scholar 

  25. Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Lipos Res 18:309–327

    Article  Google Scholar 

  26. Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Anton van Leeuw 70:113–128

    Article  CAS  Google Scholar 

  27. Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21:465–499

    Article  CAS  Google Scholar 

  28. Sant’Anna V, Malheiros PS, Brandelli A (2011) Liposome-encapsulation protects bacteriocin-like substance P34 against inhibition by Maillard reaction products. Food Res Int 44:326–330

    Article  Google Scholar 

  29. Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food preservation. Int J Food Microbio 121:123–138

    Article  CAS  Google Scholar 

  30. Sobrino-Lópes A, Martín-Belloso O (2008) Use of nisin e other bacteriocins for preservation of dairy products. Int Dairy J 18:329–343

    Article  Google Scholar 

  31. Sze A, Erickson D, Ren L, Li D (2003) Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. J Colloid Interface Sci 261:402–410

    Article  CAS  Google Scholar 

  32. Taylor TM, Gaysinski S, Davidson PM, Bruce BD, Weiss J (2007) Characterization of antimicrobial-bearing liposomes by zeta-potential, vesicle-size and encapsulation efficiency. Food Biophys 2:1–9

    Article  Google Scholar 

  33. Taylor TM, Bruce BD, Weiss J (2008) Listeria monocytogenes and Escherichia coli O157:H7 inhibition in vitro by liposomes-encapsulated nisin and ethylene diaminetetraacetic acid. J Food Saf 28:183–197

    Article  CAS  Google Scholar 

  34. Teixeira ML, Santos J, Silveira NP, Brandelli A (2008) Phospholipid nanovesicles containing a bacteriocin-like substance for control of Listeria monocytogenes. Inn Food Sci Emerg Technol 9:49–53

    Article  CAS  Google Scholar 

  35. Xiao D, Davidson PM, Zhong O (2011) Spray-dried zein capsules with coencapsulated nisin and thymol as antimicrobial delivery system for enhanced antilisterial properties. J Agric Food Chem 59(13):7393–7404

    Article  CAS  Google Scholar 

  36. Weiss J, Takhistov P, McClements L (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116

    Article  CAS  Google Scholar 

  37. Were LM, Bruce BD, Davidson PM, Weiss J (2003) Size, stability, and entrapment efficiency of phospholipids nanocapsules containing polypeptide antimicrobials. J Agric Food Chem 51:8073–8079

    Article  CAS  Google Scholar 

  38. Were LM, Bruce B, Davidson PM, Weiss J (2004) Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. J Food Prot 67:922–927

    CAS  Google Scholar 

Download references

Acknowledgments

Authors thank to Dr. Sylvia Stanisçuaski Guterres from UFRGS, for the use of the Zetasizer equipment and to Center of Electronic Microscopy (UFRGS) for technical support. This research was financially supported by CNPq, Brazil. We declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda de Souza da Motta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Mello, M.B., da Silva Malheiros, P., Brandelli, A. et al. Characterization and Antilisterial Effect of Phosphatidylcholine Nanovesicles Containing the Antimicrobial Peptide Pediocin. Probiotics & Antimicro. Prot. 5, 43–50 (2013). https://doi.org/10.1007/s12602-013-9125-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-013-9125-3

Keywords

Navigation