Skip to main content
Log in

Cochlodinium polykrikoides red tide detection in the South Sea of Korea using spectral classification of MODIS data

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

To distinguish true red tide water (particularly Cochlodinium polykrikoides blooms) from non-red tide water (false satellite high chlorophyll water) in the South Sea of Korea, we developed a systematic classification method using spectral information from MODIS level products and applied it to five different harmful algal bloom events. Red tide and nonred tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 678 nm. The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio in areas with lower and higher contributions of CDOM to chlorophyll, respectively. After applying the red tide classification (using the four criteria), the spectral response of the red tide water, which is influenced by pigment concentration, showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water, due to decreasing phytoplankton absorption and increasing detritus/CDOM absorption at blue bands. The results were well matched with the discoloration of water (blue to dark red/brown) and delineated the areal coverage of C. polykrikoides blooms, revealing the nature of spatial and temporal variations in red tides. This simple spectral classification method led to increase user accuracy for C. polykrikoides and non-red tide blooms (>46% and >97%) and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, chlorophyll anomaly, fluorescence analysis, or proposed red tide detection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Ahn Y-H, Moon J-E (1998) Specific absorption coefficients for chlorophyll and suspended sediment in the Yellow and Mediterranean Sea. Korean J Remote Sens 14(4):353–365

    Google Scholar 

  • Ahn YH, Shanmugam P (2006) Detecting the red tide algal bloom from satellite ocean color observations in optically complex Northeast-Asia Coastal waters. Remote Sens Environ 103:419–437

    Article  Google Scholar 

  • Ahn YH, Shanmugam P, Ryu JH, Jeong JC (2006) Satellite detection of harmful algal bloom occurrences in Korean waters. Harmful Algae 5:213–231

    Article  Google Scholar 

  • Babin M, Morel A, Gentili B (1996) Remote sensing of sea surface sun-induced chlorophyll-a fluorescence: Consequences of natural variation in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence. Int J Remote Sens 17:2417–2448

    Article  Google Scholar 

  • Bricaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. J Geophys Res 100:13,321–13,332

    Article  Google Scholar 

  • Cannizzaro JP, Carder KL, Chen FR, Heil CA, Vargo GA (2008) A novel technique for detection of the toxic dinoflagellate, K. brevis, in the Gulf of Mexico from remotely sensed ocean color data. Cont Shelf Res 28:137–158

    Article  Google Scholar 

  • Carder KL, Chen FR, Lee ZP, Hawes SK, Kamykowski D (1999) Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures. J Geophys Res 104:5403–5421

    Article  Google Scholar 

  • Ciotti AM, Lewis MR, Cullen JJ (2002) Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol Oceanogr 47(62):404–417

    Article  Google Scholar 

  • Dierssen HM, Kudela RM, Ryan JP, Zimmerman RC (2006) Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnol Oceanogr 51(6):2646–2659

    Article  Google Scholar 

  • Esaias W, Abbott M, Barton I, Brown OB, Campbell JW, Carder KL, Clark DK, Evans RH, Hoge FE, Gordon HR, Balch WM, Letelier R, Minnett PJ (1998): an overview of MODIS capabilities for ocean science observations. IEEE Trans Geosci Remote Sens 36:1250–1265

    Article  Google Scholar 

  • Franz BA (2006a) Extension of MODIS Ocean Processing Capabilities to Include the 250 & 500-meter Land/Cloud Bands, NASA Ocean Biology Processing Group, Ocean Color Web. http://oceancolor.gsfc.nasa.gov/DOCS/modis_hires/

  • Franz BA (2006b) MSL12:The Multi-Sensor Level-1 to Level 2 Code, NASA Ocean Biology Processing Group, Ocean Color Web. http://oceancolor.gsfc.nasa.gov/DOCS/MSL12/

  • Gordon HR, Wang M (1994) Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Appl Optics 33:443–452

    Article  Google Scholar 

  • Hooker SB, Firestone ER, Acker JC (1994) SeaWiFS Pre-launch Radiometric Calibration and Spectral Characterization. SeaWiFS technical report series, NASA Technical Memorandum 104566, Vol. 23

  • Hu C, Muller-Karger FE, Biggs DC, Carder KL, Nababan B, Dadeau D, Vanderbloemen J (2003) Comparison of ship and satellite bio-optical measurements on the continental margin of the NE Gulf of Mexico. Int J Remote Sens 24(13):2597–2612

    Article  Google Scholar 

  • Hu C, Muller-Karger FE, Vargo GA, Neely MB, Johns E (2004) Linkages between coastal runoff and the Florida Keys ecosystem: a study of a dark plume event. Geophys Res Lett 31. doi:10.1029/2004GL020382

  • Hu C, Muller-Karger FE, Taylor C, Carder KL, Kelble C, Johns E, Heil CA (2005) Red tide detection and tracing using MODIS fluorescence data: a regional example in SW Florida coastal waters. Remote Sens Environ 97:311–321

    Article  Google Scholar 

  • IOCCG (2000) Remote sensing of ocean colour in coastal, and other optically-complex, waters. In: Sathyendranath S (ed) Report of the International Ocean-Color Coordination Group, no. 3, Dartmouth, 140 p

  • Ishizaka J, Kitaura Y, Touke Y, Sasaki H, Tanaka A, Murakami H, Suzuki T, Matsuoka K, Nakata H (2006) Satellite detection of red tide in Ariake Sound, 1998–2001. J Oceanogr 62:37–45

    Article  Google Scholar 

  • Kang YS, Kim HG, Lim WE, Lee CK (2002) An unusual coastal environment and Cochlodinium polykrikoides blooms in 1995 in the South Sea of Korea. J Korean Soc Oceanogr 37(4):1–12

    Google Scholar 

  • Kim HG, Choi WJ, Jung YG, Park PS, An KH, Baek CI (1999) Initiation of Cochlodinium polykrikoides blooms and its environmental characteristics around the Narodo Island in the western part of South Sea of Korea. Bull Natl Fish Res Dev Inst Korea 57:119–129 (in Korean)

    Google Scholar 

  • Kim Y, Byun Y, Kim Y, Eo Y (2009) Detection of Cochlodinium polykrikoides red tide based on two-stage filtering using MODIS data. Desalination 249:1171–1179

    Article  Google Scholar 

  • Lee D-K, Niller P (2003) Ocean response to Typhoon Rusa in the South Sea of Korea and in the East China Sea. J Korean Soc Oceanogr 38(2):60–67

    Google Scholar 

  • Lee D-K (2008) Cochlodinium polykriklides blooms and ecophysical conditions in the South Sea of Korea. Harmful Algae 7:318–323

    Article  Google Scholar 

  • Lee SG, Kim HG, Bae HM, Kang YS, Jeong CS, Lee CK, Kim SY, Kim CS, Lim WA, Cho US (2002) Handbook of harmful marine algal blooms in Korean waters. National Fisheries Research and Development Institute, Republic of Korea, 172 p

    Google Scholar 

  • Lee YS (2006) Factors affecting outbreaks of high-density Cochlodinium polykrikoides red tides in the coastal seawaters around Yeosu and Tongyeong, Korea. Mar Pollut Bull 52: 1249–1259

    Article  Google Scholar 

  • Letelier RM, Abbott MR (1996) An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens Environ 58:215–223

    Article  Google Scholar 

  • Lim WA, Lee YS, Lee SG (2008) Characteristic of environmental factors related to outbreak and decline of Cochlodinium polykrikoides bloom in the southeast coastal waters of Korea, 2007. J Korean Soc Oceanogr 13(3):325–332 (in Korean)

    Google Scholar 

  • McClain CR, Feldman GC, Hooker SB (2004) An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep-Sea Res II 51:5–42

    Article  Google Scholar 

  • Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (case I water). J Geophys Res 93:10749–10768

    Article  Google Scholar 

  • Morel A, Maritorena S (2001) Bio-optical properties of oceanic waters: a reappraisal. J Geophys Res 106:7163–7180

    Article  Google Scholar 

  • NFRDI (2004) Harmful Algal Blooms in Korean Coastal Waters from 2002 to 2003. National Fisheries Research and Development Institute, Republic of Korea, 274 p (in Korean)

  • NFRDI (2005) Harmful Algal Blooms in Korean Coastal Waters in 2004. National Fisheries Research and Development Institute, Republic of Korea, 95 p (in Korean)

  • O’Reilly JE, Maritorena S, Siegel DA, O’Brien MC, Toole D, Mitchell BG, Kahru M, Chavez FP, Strutton P, Cota GF, Hooker SB, McClain CR, Carder KL, Muller-Karger F, Harding L, Magnuson A, Phinney D, Moore GF, Aiken J, Arrigo KR, Letelier R, Culver M (2000) Ocean Color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: Version 4. In: Hooker SB, Firestone ER (eds) SeaWiFS Postlaunch Calibration and Validation Analysis, Part 3, SeaWiFS Postlaunch Tech. Rep. Ser., vol. 11, NASA/TM-2000-206892, NASA, Greenbelt, MD, pp 9–27

    Google Scholar 

  • Ryan JP, Dierssen HM, Kudela RM, Scholin CA, Johnson KS, Sullivan JM, Fisher AM, Rienecker EV, Mcenaney PR, Chavez FP (2005) Coastal ocean physics and red tides: an example from Monterey Bay, California. Oceanogr 18(2): 246–255

    Google Scholar 

  • Sasaki H, Tanaka A, Iwataki M, Touke Y, Siswanto E, Knee TC, Ishizaka J (2008) Optical Properties of Red Tide in Isahaya Bay, Southwestern Japan: influence of chlorophyll a concentration. J Oceanogr 64:511–523

    Article  Google Scholar 

  • Sathyendranath S, Cota G, Stuart V, Maass M, Platt T (2001) Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches. Int J Remote Sens 22:249–273

    Article  Google Scholar 

  • Schofield O, Gryzmski J, Bissett WP, Kirkpatrick GJ, Millie DF, Moline M, Roesler CS (1999) Optical monitoring and forecasting systems for harmful algal bloom: possibility or pipe dream ? J Phycol 35:1477–1496

    Article  Google Scholar 

  • Shanmugam P, Ahn Y-H, Ram PS (2008) SeaWiFS sensing of hazardous algal blooms and their underlying mechanisms in shelf-slope waters of the Northwest Pacific during summer. Remote Sens Environ 112:3248–3270

    Article  Google Scholar 

  • Siegel DA, Maritorena S, Nelson NB, Behrenfeld MJ (2005) Independence and interdependencies among global ocean color properties: reassessing the bio-optical assumption. J Geophys Res 110:C07011. doi:10.1029/2004JC002527

    Article  Google Scholar 

  • Stramski D, Kiefer DA (1991) Light scattering by microorganisms in the open ocean. Progr Oceanogr 28:343–393

    Article  Google Scholar 

  • Stumpf RP, Culver ME, Tester PA, Tomlinson M, Kirkpatrick GJ, Pederson BA, Truby E, Ransibrahmanakuf V, Soracco M (2003) Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae 2:147–160

    Article  Google Scholar 

  • Suh YS, Jang LH, Lee NK, Ishizaka J (2004) Feasibility of red tide detection around Korea waters using satellite remote sensing. J Fish Sci Tech 7(3):148–162

    Google Scholar 

  • Tomlinson MC, Stumpf RP, Ransibrahmanakul V, Turby EW, Kirkpatrick GJ, Perderson BA, Gabriel AV, Heil CA (2004) Evaluation of the use of SeaWiFS imagery for detecting Karenia brevia harmful algal blooms in the eastern Gulf of Mexico. Remote Sens Environ 91:293–303

    Article  Google Scholar 

  • Tomlinson MC, Wynne TT, Stumpf RP (2009) An evaluation of remote sensing techniques for enhanced detection of the toxic dinoflagellate, Karenia brevis. Remote Sens Environ 113:589–609

    Article  Google Scholar 

  • Werdell PJ, Bailey SW (2005) An improved in-situ bio optical data set of ocean color algorithm development and satellite data product validation. Remote Sens Environ 98:122–140

    Article  Google Scholar 

  • Wynne TT, Stumpf RP, Tomlinson MC, Warner RA, Tester PA, Dyble J, Fahnenstiel GL (2008) Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lake. Int J Remote Sens 29:3665–3672

    Article  Google Scholar 

  • Yoo S-J, Jeong J-C (1999) Detecting red tides in turbid waters. Korean J Remote sens 15(4):321–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Baek Son.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, Y.B., Ishizaka, J., Jeong, JC. et al. Cochlodinium polykrikoides red tide detection in the South Sea of Korea using spectral classification of MODIS data. Ocean Sci. J. 46, 239–263 (2011). https://doi.org/10.1007/s12601-011-0019-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-011-0019-6

Key words

Navigation