Skip to main content
Log in

The effect of decrease in salinity on the dynamics of abundance and the cell size of Corethron Hystrix (Bacillariophyta) in laboratory culture

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Effect of salinity on abundance dynamics and cell size of microalga Corethron hystrix Hensen (Bacillariophyta) were studied. C. hystrix can normally grow within a rather narrow salinity range between 32 and 28‰. The viable cells of this microalga change their morphological characters at a salinity of 24‰. This salinity level probably marks the beginning of cell division restriction, because the general number of cells by the end of the experiment was lower than in the control. The decrease of salinity to 16‰ caused pronounced irreversible morphological changes: cell height increased, chloroplasts compressed, protoplasm became granular, cytoplasm retracted, and spines shortened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad I, Hellebust JA (1985) Salinity responses of the marine microalga Brachiomonassubmarina Bohlin. J Exp Mar Biol Ecol 88(1):45–53

    Article  Google Scholar 

  • Aizdaicher NA (1992) Morphological investigations of flagellate alga Heterosigma akashiwo in a culture. Russ J Mar Biol 18(5–6):163–166

    Google Scholar 

  • Aizdaicher NA (1995) Response of the diatom Chaetoceros salsugineus to decreased salinity. Russ J Mar Biol 21(2):116–118

    Google Scholar 

  • Aizdaicher NA (1997) Effects of decreased salinity on the dinophyte alga Gymnodinium kovalevskii. Russ J Mar Biol 23(2):73–77

    Google Scholar 

  • Aizdaicher NA (1999) Effect of desalination on the diatom Pseudonitzschia pungens. Russ J Mar Biol 25(1):68–70

    Google Scholar 

  • Brand LE (1984) The salinity tolerance of forty-six marine phytoplankton isolates. Estuar Coast Shelf Sci 18:543–556

    Article  Google Scholar 

  • Brown LW (1985) Stepwise adaptation to salinity in the green alga Nannochloris bacillaris. Can J Bot 63:327–332

    Article  Google Scholar 

  • Chu WL, Phang SM, Goh SH (1996) Environmental effects on growth and biochemical composition on Nitzschia inconsispicua. Grunow J Appl Phycol 8:389–396

    Article  Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red alga Porpyridium cruentum: correlation to growth rate. J Phycol 24:328–332

    Google Scholar 

  • Crawford RM, Hinz F (1998) Three species of the diatom genus Corethron Castracane: structure, distribution and taxonomy. Diatom Res 13(1):1–28

    Google Scholar 

  • Davies OA, Abovei JFN, Tawari CC (2009) Phytoplankton community of Elechi creek, Niger Delta, Nigeria — a nutrient polluted tropical creek. Am J Appl Sci 6:1143–1152

    Article  Google Scholar 

  • Fu F-X, Bell PRF (2003) Effect of salinity on growth, pigmentation, N2 fixation and alkaline phosphatase activity of cultured Trichodesmium sp. Mar Ecol Prog Ser 257:69–76

    Article  Google Scholar 

  • Gaiko LA, Zhabin IA (1996) Variability of temperature and salinity near the mussel plantation of Vostok Bay, Sea of Japan. Russ J Mar Biol 22(2):120–124

    Google Scholar 

  • Gapochka LD (1981) Adaptations of algae. Moscow State University, Moscow, 80 p (In Russian)

    Google Scholar 

  • Gilmour DJ, Hipkins MF, Arthur DB (1984) The effect of decreasing the external salinity on the primary processes of photosynthesis in Dunaliella tertiolecta. J Exp Bot 35:28–35

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239

    Article  Google Scholar 

  • Jackson AE, Ayer SW, Laycock MV (1992) The effect of salinity on growth and amino acid composition in marine diatom Nitzchia pungens. Can J Bot 70:2198–2201

    Article  Google Scholar 

  • Gleser SI, Jause AP, Makarova IV, Proschkina-Lavrenko, Sheshukova VS (1974) The diatoms of the USSR. Vol I. Nauka, Leningrad, 403 p (In Russian)

    Google Scholar 

  • Karaeva NI, Jafarova SK (1988) The morphology of some euryhaline diatom algae according to salinity variations. Botanichesky Zhurnal 4:477–485 (In Russian)

    Google Scholar 

  • Karaeva NI, Jafarova SK (1993) Experimental investigations of euryhaline Bacillariophyta in relation to salinity variations. Algologia 3(1):97–105 (In Russian)

    Google Scholar 

  • Kharazova AD, Berger VYa (1974) Changes in RNA synthesis in the tissues of the mollusc Littorina littorea following a decrease in environmental salinity. Tsitologiya 16(2):241–243 (In Russian)

    Google Scholar 

  • Kharazova AD, Rostova VV (1976) Study of protein and RNA synthesis in the tissues of the White Sea mollusc Coryphella rufibranchalis at lowered salinity conditions. In: Adaptations of Aquatic Organisms to Salinity Variations, Izd AN SSSR, Leningrad, pp 142–153 (In Russian)

    Google Scholar 

  • Marin N, Morales F, Lodeiros C, Tamigneaux E (1998) Effect of nitrate concentration on growth and pigment synthesis of Dunaliella salina cultivated under low illumination and preadapted to different salinities. J Appl Phycol 10:405–411

    Article  Google Scholar 

  • Pratt DM (1959) The phytoplankton of lower Naragansett Bay. Limnol Oceanogr 4:425–440

    Article  Google Scholar 

  • Radchenko IG, Ilyash LV (2006) Growth and photosynthetic activity of the diatom Thalassiosira weissflogii under low salinity conditions. Izv RAN, Ser Biol 3:306–313 (In Russian)

    Google Scholar 

  • Relevante N, Gilmartin M (1982) Dynamics of phytoplankton in the Great Barrier reef lagoon. J Plankton Res 4:47–76

    Article  Google Scholar 

  • Rijstenbil JW, Sinke JJ (1989) The influence of salinity fluctuation on the ammonium metabolism of the marine diatom Skeletonema costatum grown in continuous culture. J Plankton Res 11: 297–315

    Article  Google Scholar 

  • Stonik IV, Orlova NYu, Begun AA (2008) Potentially toxic diatoms Pseudo-nitzschia fraudulenta and P. calliantha from Russian waters of East/Japan Sea and Sea Okhotsk. Ocean Sci J 43:25–30

    Article  Google Scholar 

  • Strizh IG, Popova LG, Balnokin YuV (2004) Physiological aspects of adaptation of the marine microalga Tetraselmis (Platymonas) viridis to various medium salinity. Russ J Plant Phys 51(2):176–182

    Article  Google Scholar 

  • Tomas CR (1987) Olisthodiscus luteus (Chrysophyceae). I. Effect of salinity and temperature on growth, motility and survival. J Phycol 14:309–323

    Article  Google Scholar 

  • Tsuruta A, Oghai M, Ueno S, Yamada M (1985) The effect of chlorinity on the growth of planktonic diatoms Skeletonema costatum (Grev) Cleve in vitro. Bull Jap Soc Sci Fish 51: 1883–1886

    Google Scholar 

  • Utermohl H (1958) Zur kervollkommung der qnantitativen phytoplankton Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Xu X-Q, Beardall J (1997) Effect of salinity on fatty acid composition of a green microalga from an Antarctic hypersaline lake. Phytochemistry 45(4):655–658

    Article  Google Scholar 

  • Van Alstyne KL (1986) Effects of phytoplankton taste and smell on feeding behavior of the copepod Centropages hamatus. Mar Ecol Prog Ser 34:187–190

    Article  Google Scholar 

  • Ward JE, Targett NM (1989) Influence of marine microalgal metabolites on the feeding behavior of the blue mussel Mytilus edulis. Mar Biol 101:313–321

    Article  Google Scholar 

  • Wilson DP (1981) An experimental search for phytoplanktonic algae producing metabolites which condition natural sea waters. J Mar Biol Assoc UK 61:585–607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanna V. Markina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizdaicher, N.A., Markina, Z.V. The effect of decrease in salinity on the dynamics of abundance and the cell size of Corethron Hystrix (Bacillariophyta) in laboratory culture. Ocean Sci. J. 45, 1–5 (2010). https://doi.org/10.1007/s12601-010-0001-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-010-0001-8

Key words

Navigation