Skip to main content
Log in

Crystal plasticity behavior of single-crystal pure magnesium under plane-strain compression

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A phenomenological crystal plasticity constitutive model for magnesium single crystal was presented. Four deformation mechanisms (including basal 〈a〉, prismatic 〈a〉, pyramidal 〈c + a〉 slip and tension twin) and their interactions were considered. Twin-induced lattice reorientation was also incorporated in the model. The proposed model was then applied to the simulation of plane-strain compression deformation for different orientations. Related material parameters were calibrated at first according to the classical channel-die tests. The predicted macro-and microscopic responses, along with the experimental results, show strong orientation-dependent properties. It is also found in the simulation that basal slip in the twinned region is active even before the saturation of twin activity in a twin-favored case. Furthermore, the effect of an initial deviation angle on the mechanical responses was evaluated, which is proved to be also orientation-dependent. Basal slip is found to be easily activated due to a slight deviation, while a slight deviation in the twin-favored case could result in a significant difference in the mechanical behavior after the reorientation. The effort on the study of magnesium single crystal in the present work contributes to further polycrystalline analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kulekci MK. Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol. 2008;39(9–10):851.

    Article  Google Scholar 

  2. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728.

    Article  Google Scholar 

  3. Herrera-Solaz V, Hidalgo-Manrique P, Pérez-Prado MT, Letzig D, Llorca J, Segurado J. Effect of rare earth additions on the critical resolved shear stresses of magnesium alloys. Mater Lett. 2014;128:199.

    Article  Google Scholar 

  4. Kelley E, Hosford W. Plane-strain compression of magnesium and magnesium alloy crystals. Trans Met Soc AIME. 1968;242(1):5.

    Google Scholar 

  5. Wonsiewicz BC. Plasticity of magnesium crystals. Cambridge: Massachusetts Institute of Technology; 1966. 6.

    Google Scholar 

  6. Sułkowski B. Analysis of crystallographic orientation changes during deformation of magnesium single crystals. Acta Phys Pol A. 2014;126(3):768.

    Article  Google Scholar 

  7. Drozdenko D, Bohlen J, Chmelík F, Lukáč P, Dobroň P. Acoustic emission study on the activity of slip and twin mechanisms during compression testing of magnesium single crystals. Mater Sci Eng A. 2016;650:20.

    Article  Google Scholar 

  8. Catoor D, Gao YF, Geng J, Prasad MJ, Herbert EG, Kumar KS, Pharr GM, George EP. Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation. Acta Mater. 2013;61(8):2953.

    Article  Google Scholar 

  9. Kitahara H, Mayama T, Okumura K, Tadano Y, Tsushida M, Ando S. Anisotropic deformation induced by spherical indentation of pure Mg single crystals. Acta Mater. 2014;78:290.

    Article  Google Scholar 

  10. Selvarajou B, Shin JH, Ha TK, Choi IS, Joshi SP, Han HN. Orientation-dependent indentation response of magnesium single crystals: modeling and experiments. Acta Mater. 2014;81:358.

    Article  Google Scholar 

  11. Taylor GI. Analysis of plastic strain in a cubic crystal. In: Stephen Timoshenko 60th Anniversary Volume. New York; 1938, 218.

  12. Hill R, Rice J. Constitutive analysis of elastic–plastic crystals at arbitrary strain. J Mech Phys Solids. 1972;20(6):401.

    Article  Google Scholar 

  13. Peirce D, Asaro RJ, Needleman A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 1983;31(12):1951.

    Article  Google Scholar 

  14. Kalidindi SR. Polycrystal plasticity: constitutive modeling and deformation processing. Cambridge: Massachusetts Institute of Technology; 1992. 7.

    Google Scholar 

  15. Van Houtte P. Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning. Acta Metall. 1978;26(4):591.

    Article  Google Scholar 

  16. Kalidindi SR. Incorporation of deformation twinning in crystal plasticity models. J Mech Phys Solids. 1998;46(2):267.

    Article  Google Scholar 

  17. Kraska M, Doig M, Tikhomirov D, Raabe D, Roters F. Virtual material testing for stamping simulations based on polycrystal plasticity. Comput Mater Sci. 2009;46(2):383.

    Article  Google Scholar 

  18. Deng G, Lu C, Su L, Tieu AK, Li J, Liu M, Zhu H, Liu X. Influence of outer corner angle (OCA) on the plastic deformation and texture evolution in equal channel angular pressing. Comput Mater Sci. 2014;81:79.

    Article  Google Scholar 

  19. Deng GY, Tieu AK, Si LY, Su LH, Lu C, Wang H, Liu M, Zhu HT, Liu XH. Influence of cold rolling reduction on the deformation behaviour and crystallographic orientation development. Comput Mater Sci. 2014;81:2.

    Article  Google Scholar 

  20. Kalidindi S, Schoenfeld S. On the prediction of yield surfaces by the crystal plasticity models for fcc polycrystals. Mater Sci Eng A. 2000;293(1):120.

    Article  Google Scholar 

  21. Zhang KS, Shi YK, Xu LB, Yu DK. Anisotropy of yielding/hardening and microinhomogeneity of deforming/rotating for a polycrystalline metal under cyclic tension–compression. Acta Metall Sin. 2011;47(10):1292.

    Google Scholar 

  22. Kadkhodapour J, Butz A, Ziaei-Rad S, Schmauder S. A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model. Int J Plast. 2011;27(7):1103.

    Article  Google Scholar 

  23. Kupka D, Huber N, Lilleodden E. A combined experimental–numerical approach for elasto-plastic fracture of individual grain boundaries. J Mech Phys Solids. 2014;64:455.

    Article  Google Scholar 

  24. Kim J-B, Yoon JW. Necking behavior of AA 6022-T4 based on the crystal plasticity and damage models. Int J Plast. 2015;73:3.

    Article  Google Scholar 

  25. Knezevic M, Levinson A, Harris R, Mishra RK, Doherty RD, Kalidindi SR. Deformation twinning in AZ31: influence on strain hardening and texture evolution. Acta Mater. 2010;58(19):6230.

    Article  Google Scholar 

  26. Wang H, Raeisinia B, Wu P, Agnew S, Tomé C. Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet. Int J Solids Struct. 2010;47(21):2905.

    Article  Google Scholar 

  27. Wang H, Wu PD, Tomé CN, Wang J. A constitutive model of twinning and detwinning for hexagonal close packed polycrystals. Mater Sci Eng A. 2012;555:93.

    Article  Google Scholar 

  28. Abdolvand H, Majkut M, Oddershede J, Schmidt S, Lienert U, Diak BJ, Withers PJ, Daymond MR. On the deformation twinning of Mg AZ31B: a three-dimensional synchrotron X-ray diffraction experiment and crystal plasticity finite element model. Int J Plast. 2015;70:77.

    Article  Google Scholar 

  29. Graff S, Brocks W, Steglich D. Yielding of magnesium: from single crystal to polycrystalline aggregates. Int J Plast. 2007;23(12):1957.

    Article  Google Scholar 

  30. Zhang J, Joshi SP. Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J Mech Phys Solids. 2012;60(5):945.

    Article  Google Scholar 

  31. Gan Y, Song W, Ning J, Tang H, Mao X. An elastic–viscoplastic crystal plasticity modeling and strain hardening for plane strain deformation of pure magnesium. Mech Mater. 2016;92:185.

    Article  Google Scholar 

  32. Muránsky O, Carr D, Barnett M, Oliver E, Šittner P. Investigation of deformation mechanisms involved in the plasticity of AZ31Mg alloy: in situ neutron diffraction and EPSC modelling. Mater Sci Eng A. 2008;496(1):14.

    Article  Google Scholar 

  33. Barnett M. Twinning and the ductility of magnesium alloys: part II. “Contraction” twins. Mater Sci Eng A. 2007;464(1):8.

    Article  Google Scholar 

  34. El Kadiri H, Oppedal A. A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects. J Mech Phys Solids. 2010;58(4):613.

    Article  Google Scholar 

  35. Capolungo L, Beyerlein I, Tomé C. Slip-assisted twin growth in hexagonal close-packed metals. Scripta Mater. 2009;60(1):32.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51375256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, BL., Fang, G. Crystal plasticity behavior of single-crystal pure magnesium under plane-strain compression. Rare Met. 36, 541–549 (2017). https://doi.org/10.1007/s12598-016-0856-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0856-7

Keywords

Navigation