Skip to main content
Log in

Electric transport mechanism and magnetoresistance of La0.80Sr0.15Ag0.05MnO3/x(CuO)

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The samples of La0.80Sr0.15Ag0.05MnO3/x(CuO) (x = 0, 0.05, 0.10, 0.15, 0.20) were prepared by the solid-state reaction method, and the structure of the samples was detected by X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), electric transport mechanism, and magnetoresistance enhancement, and the temperature stability of magnetoresistance of the samples was studied through resistivity–temperature (ρ-T) curves, ρ-T fitted curves, and magnetoresistance–temperature (MR-T) curves. The results indicate that ρ-T data can be fitted by the formula ρ = ρ 0  + AT 2 very well, and the electric transport mechanism of all the samples in metal-like area is the scattering of single magneton upon spin electron; the magnetoresistance of composite samples is far larger than that of the original material, and the MR peak value of the sample with x = 0.20 is nearly 4 times as large as that of the sample with x = 0; composite samples have comparatively good temperature stability of magnetoresistance in the temperature range of 200–260 K, and the magnetoresistance of the sample with x = 0.15 almost does not change with temperature and keeps at (5.03 ± 0.20) % in the temperature range of 210–260 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnO3 ferromagnetic films. Phys Rev Lett. 1993;71(14):2331.

    Article  Google Scholar 

  2. Wang ZM, Xu QY, Zhang H. Magnetocaloric effect at room temperature in manganese perovskite La0.65Nd0.05Pb0.3MnO3 with double resistivity peaks. J Magn Magn Mater. 2011;323(24):3229.

    Article  Google Scholar 

  3. Ibrahim N, Yahya AK, Rajput SS, Keshri S, Ralari MK. Double metal-insulator peaks and effect Sm3+ substitution on magnetic and transport properties of nole-doped La0.85Ag0.15MnO3. J Magn Magn Mater. 2011;323(16):2179.

    Article  Google Scholar 

  4. Yang WL, Chen CY, Mao XY, Chen XB. The doping effects of BiFe1-x Co x O3 (x = 0.0-0.8) in layered perovskite Bi4Ti3O12 ceramics. Chin Phys B. 2012;21(4):047502.

    Article  Google Scholar 

  5. Wang GY, Tang YG, Mao Q, Guo T, Liu N, Peng ZS. Effect of Dy substitution for Y on the magnetic properties of Y1-x Dy x CrO3 system. Chin J Rare Met. 2014;38(3):386.

    Google Scholar 

  6. Wang GY, Tang YG, Song QX, Zhang MY, Peng ZS. Electric transport properties and temperature stability of magnetoresistance of the composite system between La8/9Sr1/45Na4/45MnO3 and Sb2O3. Rare Met. 2013;32(4):363.

    Article  Google Scholar 

  7. Wang WQ, Yan GQ, Yang J, Wang GY, Tang YG, Song QX, Zhang MY, Peng ZS. Electric transport property and temperature stability of magnetoresistance of La1-x (Sr1-y K y ) x MnO3. J Chin Ceram Soc. 2011;39(12):1958.

    Google Scholar 

  8. Li L, Tang YG, Wang GY, Song QX, Zhang MY, Peng ZS. Temperature stability of magnetoresistancein (1-x)La0.7Ca0.3MnO3/xAg. Chin J Rare Met. 2013;37(1):49.

    Google Scholar 

  9. Yan CH, Xu ZG, Zhu T, Wang ZM, Cheng FX, Huang YH, Liao CS. A large low field colossal magnetoresistance in the La0.7Sr0.3MnO3 and CoFe2O4 combined system. Appl Phys. 2000;87(9):5588.

    Article  Google Scholar 

  10. Li L, Wang GY, Mao Q, Liu N, Peng ZS. Temperature stability of electrical transport mechanism and magnetoresistance in the two-phase La0.80Sr0.05Na0.15MnO3/xCuO composites. Chin Rare Earths. 2014;35(3):82.

  11. Gao SN, Xiong CM, Zhu MH, Zhao YG. Electric current-induced giant electroresistance in polycrystalline La0.33Ca0.33MnO3 thin films. Chin J Low Temp Phys. 2006;28(3):251.

    Google Scholar 

  12. Yang CP, Chen SS, Dai Q, Guo DH, Wang H. Spin-dependent electroresistance in Nd0.67Sr0.33MnO y (y<3.0). Chin Phys Soc. 2007;56(8):4908.

    Google Scholar 

  13. Tang YG, Wang GY, Yan GQ, Song QX, Zhang MY, Peng ZS. Abnormal electric transport property and magnetoresistance stability of La-Sr-K-Mn-O system. Rare Met. 2013;32(3):258.

    Article  Google Scholar 

  14. Liu P, Yan GQ, Tang YG, Wang GY, Peng ZS. Electrical transport property and temperature stability of MR of La0.5Sm0.2Sr0.3MnO3/x(Sb2O3) system. Chin J Low Temp phys. 2013;35(1):30.

    Google Scholar 

  15. Wang WQ, Wang GY, Tang YG, Yan GQ, Mao Q, Li L, Liu P, Peng ZS. Influence of composite CuO on electric transport and magnetoresistance of La0.80Sr0.05K0.15MnO3. Chin Rare Earths. 2013;34(3):64.

    Google Scholar 

  16. Okuda T, Asamitsu A, Tomioka Y, Kimura T, Taguchi Y, Tokura Y. Critical behavior of the metal-insulator transition in La1-x Sr x MnO3. Phys Rev Lett. 1998;81(15):3203.

    Article  Google Scholar 

  17. Deteresa JM, Ibarra MR, Blasco J, Garcia J, Marquina C, Algarabel P, Arnold Z, Kamenez K, Ritter C, von Helmolt R. Spontaneous behavior and magnetic field and pressure effects on La2/3Ca1/3MnO3 perovskite. Phys Rev B. 1996;54(2):1187.

    Article  Google Scholar 

  18. Mandal P, Barner K, Haupt L, Poddar A. R von Helmolt, Jansen AGM, Wyder P. High-field magnetotransport properties of La2/3Sr1/3MnO3 and Nd2/3Sr1/3MnO3 systems. Phys Rev B. 1998;57(17):10256.

    Article  Google Scholar 

  19. Hwang HY, Cheong SW, Ong NP, Batlogg B. Spin-polarized intergrain tunneling in La2/3Sr1/3 MnO3. Phys Rev Lett. 1996;77(10):2041.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Key Program of National Natural Science Foundation of China (No.19934003), the Program of Natural Science Foundation of Anhui Province (No. 1308085MA11), the Key Programs of Natural Science Research of Anhui Education Department (Nos. KJ2013A245 and KJ2012Z404), and the Open Projects of Anhui Key Laboratory of Spintronic and Nanometric Materials (Nos. 2012YKF09, 2012YKF10, and 2012YKF08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Sheng Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Wang, GY., Mao, Q. et al. Electric transport mechanism and magnetoresistance of La0.80Sr0.15Ag0.05MnO3/x(CuO). Rare Met. 34, 329–333 (2015). https://doi.org/10.1007/s12598-014-0385-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0385-1

Keywords

Navigation