Skip to main content
Log in

Nanomechanical behaviors of (110) and (111) CdZnTe crystals investigated by nanoindentation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The nanomechanical behaviors of (110) and (111) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the scanning force on the tested surface was very small (1000 nN), which would affect the testing result of nanoindentation, so the indenter was clean before nanoindentation test. The experimemtal results showed that the hardness and Young’s modulus decreased with the increase of indentation loads on the same plane. Because of the anisotropy of the CdZnTe crystal, the average hardness of (110) plane is 35% lower than that of (111) plane, and there are about 30% difference of the hardness along different crystallographic directions on the same plane. The hardness in 0° and 120° testing directions was the same due to the threefold symmetry of a Berkovich indenter. And the anisotropy affected the surface quality during machining of CdZnTe crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Duff M.C., Hunter D.B., Burger A., Groza M., Buliga V., and Black D.R., Effect of surface preparation technique on the radiation detector performance of CdZnTe, Appl. Surf. Sci., 2008, 254(9): 2889.

    CAS  ADS  Google Scholar 

  2. Wang X.Q., Jie W.Q., Li Q., and Gu Z., Surface passivation of CdZnTe wafers, Mater. Sci. Semicond. Process., 2005, 8(6): 615.

    Article  CAS  Google Scholar 

  3. Badano G., Garland J.W., and Sivananthan S., Accuracy of the in situ determination of the CdZnTe temperature by ellipsometry before the growth of HgCdTe by MBE, J. Cryst. Growth, 2003, 251(1): 571.

    Article  CAS  ADS  Google Scholar 

  4. Wang T., Jie W.Q., Zhang J.J., Yang G., Zeng D.M., Xu Y.D., Ma S.Y., Hua H., and He K., Study on the behaviors of impurities in cadmium zinc telluride, J. Cryst. Growth, 2007, 304(2): 313.

    Article  CAS  ADS  Google Scholar 

  5. Marchenko M.P., Golyshev V.D., and Bykova S.V., Investigation of Cd1−x ZnxTe composition inhomogeneity at crystal growth by AHP-method, J. Cryst. Growth, 2007, 303(1): 193.

    Article  CAS  ADS  Google Scholar 

  6. Zeng D.M., Jie W.Q., Wang T., Zha G.Q., and Zhang J.J., Effects of mosaic structure on the physical properties of CdZnTe crystals, Nucl. Instrum. Methods A, 2008, 586(3): 439.

    Article  CAS  ADS  Google Scholar 

  7. Kumar S., Kapoor A.K., Nagpal A., Sharma S., Verma D., Kumar A., Raman R., and Basu P.K., Effect of substrate dislocations on the Hg in-diffusion in CdZnTe substrates used for HgCdTe epilayer growth, J. Cryst. Growth, 2006, 297(2): 311.

    Article  CAS  ADS  Google Scholar 

  8. Schlesinger T.E., Toney J.E., Yoon H., Lee E.Y., Brunett B.A., Franks L., and Hames R.B., Cadmium zinc telluride and its use as a nuclear radiation detector material, Mater. Sci. Eng. R, 2001, 32(4–5): 103.

    Article  Google Scholar 

  9. Berke P., Tam E., Delplancke-Ogletree M.P., and Massart T.J., Study of the rate-dependent behavior of pure nickel in conical nanoindentation through numerical simulation coupled to experiments, Mech. Mater., 2009, 41(2): 154.

    Article  Google Scholar 

  10. Jang B. and Matsubara H., Hardness and Young’s modulus of nanoporous EB-PVD YSZ coatings by nanoindentation, J. Alloys Compd., 2005, 402(1–2): 237.

    Article  CAS  Google Scholar 

  11. Viswanath B., Raghavan R., Gurao N.P., Ramamurty U., and Ravishankar N., Mechanical properties of tricalcium phosphate single crystals grown by molten salt synthesis, Acta Biomater., 2008, 4(5): 1448.

    Article  CAS  PubMed  Google Scholar 

  12. Stus N.V., Dub S.N., Stratiychuk D.A., and Lisnyak V.V., Pop-in effect at nanoindentation of lithium tetraborate (100) face, J. Alloys Compd., 2005, 403(1–2): 305.

    Article  CAS  Google Scholar 

  13. Oliver W.C. and Pharr G.M., An improved technique for determining hardness and elastic modulus sensing load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7(6): 1564.

    Article  CAS  ADS  Google Scholar 

  14. Gao H., Huang Y., Nix W.D., and Hutchinson J.W., Mechanism-based strain gradient plasticity—I. Theory, J. Mech. Phys. Solids, 1999, 47(6): 1239.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Nix W.D. and Gao H.J., Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids, 1998, 46(3): 411.

    Article  MATH  CAS  ADS  Google Scholar 

  16. Javis M.R., Perez R., Bouwelen F.M., and Payne M.C., Microscopic mechanism for mechanical polishing of diamond (110) surfaces, Phys. Rev. Lett., 1998, 80(16): 3428.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renke Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Kang, R., Gao, H. et al. Nanomechanical behaviors of (110) and (111) CdZnTe crystals investigated by nanoindentation. Rare Metals 28, 570–575 (2009). https://doi.org/10.1007/s12598-009-0110-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-009-0110-7

Keywords

Navigation