Skip to main content
Log in

Phase control of absorption, dispersion and gain of weak signal field in erbium doped optical fiber

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

We have studied the optical response of a weak signal field in a three-level quantum system consisting of the energy levels of Er3 + ions doped in ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber material. It has been shown that absorption and gain can be significantly modified by changing the conditions of phase-coherence induced in the system by the resonant fields. The role of broad-band incoherent pumping on gain equalization is investigated. Our results highlight gain leveling over a substantial range of frequencies at a particular condition of dynamically induced phase-coherence. On controlling phase-coherence, the propagation of signal field can be achieved either in subluminal or in superluminal regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.E. Harris, Electromagnetically induced transparency. Phys. Today 50(9), 36–42 (1997)

    Article  Google Scholar 

  2. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77(2), 633–673 (2005)

    Article  ADS  Google Scholar 

  3. A.M. Akulshin, S. Barreiro, A. Lezama, Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor. Phys. Rev. A 57(4), 2996–3002 (1998)

    Article  ADS  Google Scholar 

  4. A. Lezama, S. Barreiro, A.M. Akulshin, Electromagnetically induced absorption. Phys. Rev. A 59(6), 4732–4735 (1999)

    Article  ADS  Google Scholar 

  5. C. Goren, A.D. Wilson-Gordon, M. Rosenbluh, H. Friedmann, Electromagnetically induced absorption due to transfer of coherence and to transfer of population. Phys. Rev. A 67(3), 033807(8 pp) (2003)

    Article  ADS  Google Scholar 

  6. A. Imamoglu, J.E. Field, S.E. Harris, Lasers without inversion: a closed lifetime broadened system. Phys. Rev. Lett. 66(9), 1154–1156 (1991)

    Article  ADS  Google Scholar 

  7. A.S. Zibrov, M.D. Lukin, D.E. Nikonov, L. Hollberg, M.O. Scully, V.L. Velichansky, H.G. Robinson, Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb. Phys. Rev. Lett. 75(8), 1499–1502 (1995)

    Article  ADS  Google Scholar 

  8. Y. Zhu, Lasing without inversion in a closed three-level system. Phys. Rev. A 45(9), R6149–R6152 (1992)

    Article  ADS  Google Scholar 

  9. J. Mompart, R. Corbalan, Lasing without inversion. J. Opt. B: Quantum Semiclass. Opt. 2, R7–R24 (2000)

    Article  ADS  Google Scholar 

  10. B.K. Dutta, P.K. Mahapatra, Vacuum induced interference effect in probe absorption in a driven Y-type atom. J. Phys., B At. Mol. Opt. Phys. 41(5), 055501 (10 pp) (2008)

    Article  ADS  Google Scholar 

  11. M.O. Scully, Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67(14), 1855–1858 (1991)

    Article  ADS  Google Scholar 

  12. M.O. Scully, S.Y. Zhu, Ultra-large index of refraction via quantum interference. Opt. Commun. 87(3), 134–138 (1992)

    Article  ADS  Google Scholar 

  13. M. Fleischhauer, C.H. Keitel, M.O. Scully, C. Su, B.T. Ulrich, S.Y. Zhu, Resonantly enhanced refractive index without absorption via atomic coherence. Phys. Rev. A 46(3), 1468–1487 (1992)

    Article  ADS  Google Scholar 

  14. H.F. Zhang, P.W. Zhai, X.M. Su, J.H. Wu, J.Y. Gao, Quantum-interference effects for gain leveling in optical fibers. Phys. Rev. A 65(4), 043812 (4 pp) (2002)

    Article  ADS  Google Scholar 

  15. Z.C. Zhuo, X.M. Xu, Y.S. Zhang, Gain leveling using electromagnetically induced transparency. Phys. Lett. A 336(1), 25–30 (2005)

    Article  ADS  Google Scholar 

  16. G. Wang, Y. Xue, J.H. Wu, J.Y. Gao, Phase dependences of optical dispersion and group velocity in an Er3 + -doped yttrium aluminium garnet crystal. J. Phys., B At. Mol. Opt. Phys. 39(21), 4409–4417 (2006)

    Article  ADS  Google Scholar 

  17. M. Sahrai, S.H. Asadpour, A. Eslami-Majd, R. Sadighi-Bonabi, Lasing without population inversion in an Er3 +-doped YAG crystal. J. Mod. Opt. 59(5), 446–454 (2012)

    Article  ADS  Google Scholar 

  18. R.C. Mars, I. Reekie, I.M. Jauncey, D.N. Payne, Low noise erbium-doped fiber amplifier operating at 1.54 μm. Electron. Lett. 23(19), 1026–1028 (1987)

    Article  Google Scholar 

  19. E. Deservire, J.F. Simpson, Amplification of spontaneous emission in erbium-doped single-mode fibers. J. Lightwave Technol. 7(5), 835–845 (1989)

    Article  ADS  Google Scholar 

  20. C.J. Wang, A. Kuzmich, A Dogariu, Gain-assisted superluminal light propagation. Nature 406, 277–279 (2000)

    Article  ADS  Google Scholar 

  21. D. Bortman-Arbiv, A.D. Wilson-Gordon, H. Friedmann, Phase control of group velocity: from subluminal to superluminal light propagation. Phys. Rev. A 63(4), 043818 (7 pp) (2001)

    Article  ADS  Google Scholar 

  22. G.S. Agarwal, T.N. Dey, S. Menon, Knob for changing light propagation from subluminal to superluminal. Phys. Rev. A 64(5), 053809 (4 pp) (2001)

    Article  ADS  Google Scholar 

  23. G.S. Agarwal, S. Dasgupta, Superluminal propagation via coherent manipulation of the Raman gain process. Phys. Rev. A 70(2), 023802 (5 pp) (2004)

    ADS  Google Scholar 

  24. H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, X. Chen, Light propagation from subluminal to superluminal in a three-level Λ type system. Phys. Lett. A 335(1), 68–75 (2005)

    Article  ADS  MATH  Google Scholar 

  25. H. Tang, H. Guo, The optical properties of a V-type atomic medium driven by an additional field. Phys. Lett. A 337(2), 92–96 (2006)

    Article  ADS  Google Scholar 

  26. L. Li, H. Guo, F. Xiao, X. Peng, X. Chen, Control of light in an M-type five-level atomic system. J. Opt. Soc. Am. B 22(6), 1309–1313 (2005)

    Article  ADS  Google Scholar 

  27. L.-G. Wang, S. Qamar, S.Y. Zhu, M.S. Zubairy, Manipulation of the Raman process via incoherent pump, tunable intensity, and phase control. Phys. Rev. A 77(3), 033833 (9 pp) (2008)

    ADS  Google Scholar 

  28. M. Saharai, M. Sharifi, M. Mahmoudi, The effect of an incoherent pumping on the dispersive and absorptive properties of a four-level medium. J. Phys., B At. Mol. Opt. Phys. 42(18), 185501 (6 pp) (2009)

    ADS  Google Scholar 

  29. H. Wu, Y. Zhang, S. Liu, J. Wang, B. Dang, P. Yuan, Transition of light propagation from slow light to superluminal light in a four-level system. J. Opt. Soc. Am. B 27(6), A93–A98 (2010)

    Article  Google Scholar 

  30. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  31. R.W. Boyd, D.J. Gauthier, A.L. Gaeta, A.E. Willner, Maximum time delay achievable on propagation through a slow-light medium. Phys. Rev. A 71(2), 023801 (4 pp) (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

B. K. Dutta would like to thank the University Grants Commission, New Delhi, India for the financial assistance (Grant No.: PSW-164/11-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Panchadhyayee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayal, I., Dutta, B.K., Panchadhyayee, P. et al. Phase control of absorption, dispersion and gain of weak signal field in erbium doped optical fiber. J Opt 41, 235–242 (2012). https://doi.org/10.1007/s12596-012-0087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-012-0087-8

Keywords

Navigation