Skip to main content
Log in

Collinear Points in the Photogravitational ER3BP with Zonal Harmonics of the Secondary

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The positions and stability of the collinear equilibrium points in the photogravitational ER3BP with zonal harmonics of the secondary is investigated. The effects of the perturbing forces: - oblateness, eccentricity and radiation pressure—on the positions and stability of collinear points \((L_{1,2,3})\) of an infinitesimal mass in the framework of the photogravitational ER3BP with zonal harmonics of the secondary are established. These effects on the positions of the binary systems Zeta Cygni, 54 Piscium, Procyon A/B and Regulus A are shown graphically and numerically from the analytic results obtained. It is observed that as the zonal harmonic \(J_{4}\) and eccentricity e increase, the collinear points shift towards the origin, while the reverse is observed with increase in the semi-major axis. The stability behavior however is unaffected by the introduction of these parameters, the collinear points remain linearly unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. AbdulRaheem, A., Singh, J.: Combined effects of perturbations, radiations and oblateness on the stability of equilibrium points in the restricted three-body problem. Astron. J. 131, 1880–1885 (2006)

    Google Scholar 

  2. Ammar, M.K.: Third order secular solution of the variational equations of motion of motion of a satellite in orbit around a non-spherical planet. Astrophys. Sp. Sci. 340(1), 43 (2012)

    MATH  Google Scholar 

  3. Abouelmagd, E.I.: Existence and stability of triangular points in the restricted three-body problem with numerical applications. Astrophys. Sp. Sci. 342(1), 45 (2012)

    MathSciNet  Google Scholar 

  4. Barrow-Green, J.: Poincaré and the Three-Body Problem. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  5. Battista, E., Dell’Agnelos, S., Esposito, G., DiFiore, L., Simo, J., Grado, A.: Earth-Moon lagrangian points as a test bed for general relativity and effective field theories of gravity. Phys. Rev. D 92, 064045 (2015)

    Google Scholar 

  6. Beutler, G.: Methods of Celestial Mechanics, vol. I. Springer, Berlin (2005)

    MATH  Google Scholar 

  7. Bruno, A.D.: The restricted three-body problem: plane periodic orbits (English Translation of Bruno 1990). De Gruyter expositions in Mathematics, vol. 17. Walter de Ggruyter, Berlin (1994)

    Google Scholar 

  8. Chenciner, A.: Three body problem, Scholarpedia. 2(10), 2111 (2007)

  9. Danby, J.M.A.: Stability of the triangular points in the elliptic restricted three-body problem of three bodies. Astron. J. 69, 165–172 (1964)

  10. Grützelius, J.H.: The three-body problem, department of engineering sciences, physics and mathematics. Karlstad university, Analytical Mechanics (2004)

    Google Scholar 

  11. Gutzwiller.: Moon–Earth–Sun: the oldest three—body problem. Rev. Modern Phys. 70, 589 (1998). doi:10.1103/ReModPhys.70.589

  12. Idrisi, M.J., Taqvi, Z.A.: Existence and stability of the non-collinear libration points in the restricted three body problem when both the primaries are ellipsoid. Astrophys. Sp. Sci. 350(1), 133–14 (2014). doi:10.1007/s10509-013-1718-5

  13. Idrisi, M., Taqvi, Z.A.: Restricted three-body problem when one of the primaries is an ellipsoid. Astrophys. Sp. Sci. 348(1), 41–56 (2013)

    Google Scholar 

  14. Iorio, L.: On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging. Astron. Astrophys. 433(1), 385–393 (2005)

    Google Scholar 

  15. Iorio, L.: A note on the evidence of the gravitomagnetic of mars. Class. Quantum Gravity 23, 5451–5454 (2006). doi:10.1088/0264-9381/23/17/No1

    Article  MATH  Google Scholar 

  16. Iorio, L.: Dynamical determination of the quadrupole mass moment of a white dwarf. Astrophys. Sp. Sci. 310, 73–76 (2007a). doi:10.1007/s10509-007-9415-x

    Article  Google Scholar 

  17. Iorio, L.: Constraints on some orbital and physical properties of the WD0137-349. A/B binary system. Astrophys. Sp. Sci. 312, 337–341 (2007b). doi:10.1007/s10509-007-9701-2

    Article  Google Scholar 

  18. Iorio, L.: The impact of the oblateness of Regulus A on the motion of its companion. Astrophys. Sp. Sci. 318, 51–55 (2008). doi:10.1007/s10509-008-9889-1

    Article  Google Scholar 

  19. Iorio, L.: Orbital motion as gradiometers for Post-Newtonian tidal effects. Front. Astron. Sp. Sci. 1(3), 1–9 (2014)

    MathSciNet  Google Scholar 

  20. Julia, L.B.: Impact of solar radiation pressure on Sun-Earth L1 Libration point orbits. Purdue University, Masters of Science in Aeronautics and Astronautics (1991)

    Google Scholar 

  21. Kumar, V., Choudhry, R.K.: On the stability of the triangular libration points for the photogravitational circular restricted problem of three bodies when both of the attracting bodies are radiating. Celest. Mech. 40, 155–170 (1987)

    MATH  Google Scholar 

  22. Kumar, S., Ishwar, B.: Location of collinear equilibrium points in the generalized photogravitational elliptic restricted three-body problem. Int. J. Eng. ßSci. Tech. 3(2), 157–162 (2011)

    Google Scholar 

  23. Kumar, C.R., Narayan, A.: Existence and Stability of collinear equilibrium points in elliptical restricted three-body problem under the effects of photogravitational and oblateness primaries. Int. J. Pure Appl. Maths 80(477), 477–494 (2012)

  24. Kunitsyn, A.L., Tureshbaev, A.I.: On the collinear libration points in the photogravitational three-body problem. Celest. Mech. Dyn. Astron. 35, 105–112 (1985)

    MATH  Google Scholar 

  25. Kunitsyn, A.L.: Stability of Triangular libration points in the photogravitational three-body problem. J. Appl. Math. Mech. 65(5), 757–760 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Kunitsyn, A.L.: The stability of collinear libration points in the photogravitational three-body problem. J. Appl. Math. Mech. 65(4), 703–706 (2001)

    MathSciNet  Google Scholar 

  27. Lense, J., Thrilling, H.: Über den Einfluß EIgenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19, 156–163 (1918). (English translation by Mashhoon, B., Hehl, F.W., Theiss, D.S.: On the Effect of Rotating Distant Masses in Einstein’s Theory of Gravitation, General Relativity and Gravitation, vol. 16, pp. 727 -741 (1984))

  28. Marchal, C.: The Three-Body Problem, vol. 4. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  29. Murray, C.D., Dermott, D.E.: Solar System dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  30. Narayan, A., Singh, N.: Motion and stability of triangular equilibrium points in elliptical restricted three-body problem under radiating primaries. Astrophys. Sp. Sci. 352(1), 57–70 (2014a). doi:10.1007/s10509-014-1903-1

    Article  Google Scholar 

  31. Narayan, A., Singh, N.: Stability of triangular lagrangian points in elliptical restricted three-body problem under the radiating binary systems. Astrophys. Sp. Sci. 353(2), 457–464 (2014). doi:10.1007/s10509-014-2014-8

    Article  Google Scholar 

  32. Narayan, A., Singh, N.: Resonance stability of triangular equilibrium points in elliptical restricted three body problem under the radiating primaries. Astrophys. Sp. Sci. 353(2), 441–455 (2014c). doi:10.1007/s10509-014-2085-6

    Article  Google Scholar 

  33. Nick, S.: Astronomy notes: planet tables. http://www.astronomynotes.com (2013)

  34. Nordtvedt, K., Jr.: Testing relativity with laser ranging to the moon. Department of Physics, Montana State University, Bozeman, Physical Review 170(5) 1186–1187 (1968). doi:10.1103/PhysRev.170.1186

  35. Om, P..R, Ramashankar, S.: Location of libration points in the generalized photogravitational elliptic restricted three-body problem. Int. J. Innov. Res. Sci. Eng. Technol. 2(10) 5682–5686 (2013)

  36. Pollard, H.: Mathematical Introductions to Celestial Mechanics. Prentice-Hall, Eaglewood cliffs (1966)

    MATH  Google Scholar 

  37. Poincare, H.: Les Methodes Nouvelles de la Mechanique Celesté, tome 1 (1892), 2 (1892), 3 (1899); Gauthier – Villars; American Inst. Phys., (1892), English Translation, New Methods of celestial mechanics, parts 1, 2, 3 (1993)

  38. Radzieviskii, V.V.: The restriced problem of three-bodies problem taking account of light pressure. Astron. J. 27, 250–256 (1950)

    Google Scholar 

  39. Radzieviskii, V.V.: The space photogravitational restricted three-body problem. Astronomicheskii Zhurnal 30, 225 (1953)

    Google Scholar 

  40. Renzetti, G.: Exact geodetic precession of the orbit of a two-body gyroscope in geodesic motion about a third mass. Earth Moon Planets 109(1–4), 55–59 (2012)

    MATH  Google Scholar 

  41. Renzetti, G.: Satellite orbital precessions caused by octupolar mass moment of a non-spherical body arbitrary oriented in space. J. Astrophys. Astr. 34(4), 341–348 (2013)

    Google Scholar 

  42. Roy, A.E.: Orbital Motion. Institute of Physics Publishing, Bristol (2005)

    MATH  Google Scholar 

  43. Sanjay, K., Ishwar, B.: Location of collinear equilibrium points in the generalized photogravitational elliptic restricted three-body problem. Int. J. Eng. Sci. Technol. 3(2), 157–162 (2011)

    Google Scholar 

  44. Sahoo, S.K., Ishwar, B.: Stability of collinear equilibrium points in the generalized photogravitational elliptic restricted three-body problem. Bull. Astron. Soc. (India) 28, 576–586 (2000)

    Google Scholar 

  45. Sefinat, B.A.J., Jagadish, S., AbdulRaheem, A., Braimoh, O.J.: On the effect of perturbations, radiation and triaxiality on the stability of triangular libration points in the restricted three-body problem. Int. J. Math. II(1), 69–79 (2015) (Ver. III)

  46. Sharma, R.K., Taqvi, Z.A., Bhatnaggar, K.B.: Existence of libration points in the restricted three body problem when both the primaries are triaxial rigid bodies. Indian J. Pure Appl. Math. 32(1), 125–141 (2001)

    MathSciNet  MATH  Google Scholar 

  47. Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Springer, Berlin (1991)

    MATH  Google Scholar 

  48. Simmons, J.F.L., McDonald, A.J.C., Brown, J.C.: The restricted three-body problem with radiation pressure. Celest. Mech. 35(2), 145–187 (1985)

    MATH  Google Scholar 

  49. Singh, J., Ishwar, B.: Stability of triangular points in the generalized photogravitational restricted three-body problem. Bull. Astron. Soc. (India) 27, 415–424 (1999)

    Google Scholar 

  50. Singh, J.: Combined effects of oblateness and radiation on the non-linear stability of L\(_{4 }\)in the restricted three-bodies problem. Astron. J. 137(2) 3286–3292 (2009). doi:10.1088/0004-6256/137/2/3286

  51. Singh, J., Taura, J.J.: Effects of zonal harmonics and a circular cluster of material points on the stability of triangular points in the restricted three-body problem. Astrophys. Sp. Sci. 350, 127 (2014a)

    Google Scholar 

  52. Singh, J., Taura, J.J.: Collinear libration points in the photogravitational CR3BP with zonal harmonics and potential from a belt. Int. J. Astron. Astrophys. 5, 155–165 (2015)

    Google Scholar 

  53. Singh, J., Umar, A.: Motion in the photogravitational elliptic restricted three-body problem under an oblate primary. Astron. J. 143, 109 (2012a)

    Google Scholar 

  54. Singh, J., Umar, A.: On the stability of triangular equilibrium points in the elliptic restricted three-body problem under radiating and oblate primaries. Astrophys. Sp. Sci. 341, 349–358 (2012b)

    MATH  Google Scholar 

  55. Singh, J., Umar, A.: Collinear equilibrium points in the elliptic restricted three-body problem with oblateness and radiation. Adv. Sp. Res. 52, 1489–1496 (2013)

    Google Scholar 

  56. Singh, J., Umar, A.: The influence of triaxiality and oblateness on the triangular points of double pulsars. Astrophys. Sp. Sci. 352, 429–436 (2014). doi:10.1007/s10509-014-1930-y

    Article  Google Scholar 

  57. Singh, J., Umar, A.: On motion around the collinear libration points in the elliptic R3BP with a bigger triaxial primary. New Astron. 29, 36–41 (2014a)

    Google Scholar 

  58. Singh, J., Umar, A.: The collinear libration points in the elliptic R3BP with a bigger triaxial primary an oblate secondary. IJAA 4, 391–398 (2014b)

    Google Scholar 

  59. Singh, J., Umar, A.: Effect of oblateness of an artificial satellite on the orbits around he triangular points of the Earth - Moon System in the axisymmetric elliptic restricted three-body problem. Differ. Equ. Dyn. Syst (2015). doi:10.1007/s12591-014-0232-8

    Article  Google Scholar 

  60. Szebehely, V.G.: Theory of Orbits: The Restricted Problem of Three-Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  61. Tkhai, N.V.: Stability of the collinear points of the photogravitational three-body problem with an internal fourth order resonance. J. Appl. Math. Mech. 76, 441–445 (2012)

    MathSciNet  MATH  Google Scholar 

  62. Tsirogiannis, G.A., Douskos, C.N., Perdios, E.A.: Computation of the Lyapunov orbits in the photogravitational restricted three-body problem with oblateness. Astrophys. Sp. Sci. 305, 389 (2006)

    Google Scholar 

  63. Umar, A., Singh, J.: Semi-analytic solutions for the triangular points of double white dwarfs in the elliptic restricted three-body problem: impact of the body’s oblateness and the orbital eccentricity. Adv. Sp. Res (2015). doi:10.1016/j.asr.2015.01.142

    Article  Google Scholar 

  64. Valtonen, M., Karttunen, H.: The three-body problem. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  65. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th edn. Cambridge University Press, Cambridge (1937)

    MATH  Google Scholar 

  66. Winter, A.: The Analytical Foundations o Celestial Mechanics. Princeton University Press, Princeton (1941)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aishetu Umar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleiman, R., Umar, A. & Singh, J. Collinear Points in the Photogravitational ER3BP with Zonal Harmonics of the Secondary. Differ Equ Dyn Syst 28, 901–922 (2020). https://doi.org/10.1007/s12591-017-0352-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0352-z

Keywords

Navigation