Skip to main content
Log in

The Effect of Predator Density Dependent Transmission Rate in an Eco-Epidemic Model

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper deals with predator-prey-pathogen interaction where predator influences the transmission rate of the infection in its prey. It is assumed that predator consumes infected prey only. The main results address the existence of interior equilibrium point and its stability. Also we derive the condition for persistence of the system. Bifurcation at the coexistence equilibrium point is established. Lastly, the condition for non-existence of closed orbits is found. Some numerical simulations illustrate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morozov, AYu.: Revealing the role of predator-dependent disease transmission in the epidemiology of a wildlife infection: a model study. Theor. Ecol. (2011). doi:10.1007/s12080-011-0142-0

  2. Holt, R.D., Roy, M.: Predation can increase the prevalence of infectious disease. Am. Nat. 169, 690–699 (2007)

    Google Scholar 

  3. Packer, C., Holt, R.D., Hudson, P.J., Lafferty, K.D., Dobson, A.P.: Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol. Lett. 6, 797–802 (2003)

  4. Freedman, H.I., Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213–231 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Choisy, M., Rohani, P.: Harvesting can increase severity of wildlife disease epidemics. Proc. R. Soc. B. 273, 2025–2034 (2006)

    Google Scholar 

  6. Hawlena, D., Abramsky, Z., Bouskila, A.: Bird predation alters infestation of desert lizards by parasitic mites. Oikos 119, 730–736 (2010)

    Google Scholar 

  7. Hudson, P.J., Dobson, A.P., Newborn, D.: Prevention of population cycles by parasite removal. Science 282, 2256–2258 (1998)

    Google Scholar 

  8. Chattopadhyay, J., Arino, O.: A predator-prey model with disease in the prey. Nonlinear Anal. 36, 747–756 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Venturino, E.: Epidemics in predator-prey models:disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)

    MATH  Google Scholar 

  10. Hsieh, Y.H., Hsiao, C.K.: Predator prey model with disease infection in both populations. Math. Med. Biol. 25(3), 247–266 (2008)

    MATH  Google Scholar 

  11. Xiao, Y.N., Chen, L.: Modelling and analysis of predator-prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Das, P.K., Kundu, K., Chattopadhyay, J.: A predator prey mathematical model with both the populations affected by diseases. Ecol. Complex. 8(1), 687–708 (2011)

    Google Scholar 

  13. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn and Co, Boston (1982)

    MATH  Google Scholar 

  14. Mukherjee, D.: Uniform persistence in a generalized prey-predator system with parasite infection. Biosystems 47, 101–112 (1998)

    Google Scholar 

  15. Freedman, H.I.: A model of predator -prey dynamics as modified by the action of a parasite. Math. Biosci. 99, 143–155 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Mukherjee, D.: Persistence in a prey-predator system with disease in the prey. J. Biol. Syst. 11, 101–112 (2003)

    MATH  Google Scholar 

  17. Chattopadhyay, J., Bairagi, N.: Pelicans at risk in Salton Sea—an eco-epidemiological study. Ecol. Model. 136, 102–112 (2001)

    Google Scholar 

  18. Rhodes, C.J., Martin, A.P.: The influence of viral infection on a plankton ecosystem undergoing nutrient enrichment. J Theor. Biol. 265, 225–237 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Lima, S.L.: Nonlethal effects in the ecology of predator-prey interactions. BioScience 48, 25–34 (1998)

    Google Scholar 

  20. Rigby, M.C., Jokela, J.: Predator avoidance and immune defence: costs and trade-offs in snails. Proc. R Soc. Lond. B. Biol. Sci. 267, 171–176 (2010)

  21. Werner, E.E.: Individual behavior and higher-order species interactions. Am. Nat. 140, S5–S32 (1992)

    Google Scholar 

  22. Thiemann, G.W., Wassersug, R.J.: Patterns and consequences of behavioural responses to predators and parasites in Rana tadpoles. Biol. J. Linn. Soc. 71, 513–528 (2000)

    Google Scholar 

  23. Yin, M., Laforsch, C., Lohr, J.N., Wolinska, J.: Predator-induced defense makes Daphnia more vulnerable of parasites. Evolution 65, 1482–1488 (2011)

    Google Scholar 

  24. Baker, R.L., Smith, B.P.: Conflict between antipredator and antiparasite behaviour in larval damselflies. Oecologia 109, 622–628 (1997)

    Google Scholar 

  25. Gard, T.C., Hallam, T.G.: Persistence in food webs-I. Lotka-Volterra food chains’. Bull. Math. Biol. 41, 285–299 (1979)

    MathSciNet  MATH  Google Scholar 

  26. McCallum, H., Barlow, N.D., Hone, J.: How should pathogen transmission be modelled? Trends Ecol. Evol. 16, 295–300 (2001)

    Google Scholar 

  27. Hudson, P.J.: Grouse in Space and Time. Game Conservancy Ltd, Fordingbridge, Hampshire (1992)

    Google Scholar 

  28. Murray, D.L., Cary, J.R., Keith, L.B.: Interactive effects of sublethal nematodes and nutritional status on snowshoe hare vulnerability to predation. J. Anim. Ecol. 66, 250–264 (1997)

    Google Scholar 

  29. Li, Y., Muldowney, J.S.: On Bendixson criteria. J. Differ. Equ. 106, 27–39 (1993)

  30. Murray, D.L.: Differential body condition and vulnerability to predation in snowshoe hares. J. Anim. Ecol. 71, 614–625 (2002)

    Google Scholar 

  31. Hutson, V., Law, R.: Permanent coexistence in general models of three interacting species. J. Math. Biol. 21(3), 285–298 (1985)

    MathSciNet  MATH  Google Scholar 

  32. Hofbauer J.: Saturated equilibria, permanence and stability for ecological systems. In: Groos, L., Hallam, T., Levin, S. (eds.) Mathematical Ecology, Proc. Trieste. World Scientific, Singapore (1986)

  33. Butler, G.J., Freedman, H.I., Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96, 425–430 (1986)

    MathSciNet  MATH  Google Scholar 

  34. Mukherjee, D.: Persistence aspect of a predator-prey model with disease in the prey. Diff. Eqn. Dyn. Syst. 24, 173–188 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Sen, M., Banerjee, M., Morozov, A.: A generalist predator regulating spread of a wildlife disease: exploring two infection transmission scenarios. Math. Model. Nat. Phenom. 10(2), 74–95 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Mukherjee, D.: Hopf bifurcation in an eco-epidemic model. Appl. Math. Comput. 217, 2118–2124 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their helpful comments and suggestions for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, C., Kesh, D. & Mukherjee, D. The Effect of Predator Density Dependent Transmission Rate in an Eco-Epidemic Model. Differ Equ Dyn Syst 28, 479–493 (2020). https://doi.org/10.1007/s12591-016-0342-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0342-6

Keywords

Navigation