Skip to main content
Log in

Maximum Number of Limit Cycles for Generalized Kukles Polynomial Differential Systems

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

We study the maximum number of limit cycles of the polynomial differential systems of the form

$$\begin{aligned} \dot{x}=-y+l(x), \,\dot{y}=x-f(x)-g(x)y-h(x)y^{2}-d_{0}y^{3}, \end{aligned}$$

where \(l(x)=\varepsilon l^{1}(x)+\varepsilon ^{2}l^{2}(x),\)\(f(x)=\varepsilon f^{1}(x)+\varepsilon ^{2}f^{2}(x),\)\(g(x)=\varepsilon g^{1}(x)+\varepsilon ^{2}g^{2}(x),\)\(h(x)=\varepsilon h^{1}(x)+\varepsilon ^{2}h^{2}(x)\) and \(d_{0}=\varepsilon d_{0}^{1}+\varepsilon ^{2}d_{0}^{2}\) where \(l^{k}(x),\)\(f^{k}(x),\)\(g^{k}(x)\) and \(h^{k}(x)\) have degree m\(n_{1},\)\(n_{2}\) and \(n_{3}\) respectively, \(d_{0}^{k}\ne 0\) is a real number for each \(k=1,2,\) and \(\varepsilon \) is a small parameter. We provide an upper bound of the maximum number of limit cycles that the above system can have bifurcating from the periodic orbits of the linear centre \(\dot{x}=-y,\, \dot{y}=x\) using the averaging theory of first and second order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Natl. Bureau Stand Appl. Math. Ser. 55 (1972)

  2. Buica, A., Francoise, J.P., Llibre, J.: Periodic solutions of nonlinear periodic differential systems with a small parameter. Commun. Pure Appl. Anal. 6, 103–111 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Buica, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 128, 7–22 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chavarriga, J., Sáez, E., Szántó, I., Grau, M.: Coexistence of limit cycles and invariant algebraic curves for a Kukles system. Nonlinear Anal. 59, 673–693 (2004)

    Article  MathSciNet  Google Scholar 

  5. Gradshteyn, I.S., Ryshik, I.M.: Table of integrals, series and products. In: Jeffrey, A., Zwillinger, D. (eds) 7th edn. Academic Press, New York (2007)

  6. Hilbert, D.: Mathematische probleme. In: Lecture, Second International Congress of Mathematicians, pp. 253–297. Nachr. Ges. Wiss. Gottingen Math. Phys. KL, Paris (1900) [in English: Bull. Amer. Math. Soc. 8, 437–479 (1902); Bull. Amer. Math. Soc. (N. S.) 37, 407–436 (2000)]

  7. Kukles, I.S.: Sur quelques cas de distinction entre un foyer et un centre. Dokl. Akad. Nauk. SSSR 43, 208–211 (1944)

  8. Llibre, J., Mereu, A.C.: Limit cycles for generalized kukles polynomial differential systems. Nonlinear Anal. 74, 1261–1271 (2011)

    Article  MathSciNet  Google Scholar 

  9. Marsden, J.E., McCracken, M.: The Hopf bifurcation and its applications. Applied Mathematical Sciences, vol. 19. Springer, New York (1976)

    Book  Google Scholar 

  10. Poincaré, H.: Memoire sur les Courbes Définies par Une Équation Différentielle. Jacques Gabay, Paris (1993) [Edit. Reprinted from the original papers published in the Journal de Mathématiques 7 (1881) 375–422, 8 (1882) 251–296, 1 (1885) 167–244, and 2 (1886) 151–217]

  11. Rousseau, C., Toni, B.: Local bifurcations of critical periods in the reduced Kukles system. Can. J. Math. 49, 338–358 (1997)

    Article  MathSciNet  Google Scholar 

  12. Sadovskii, A.P.: Cubic systems of nonlinear oscillations with seven limit cycles. Diff. Uravn. SSSR 39, 472–481 (2003)

    MathSciNet  Google Scholar 

  13. Sanders, J.A., Verhulst, F.: Averaging methods in nonlinear dynamical systems. Applied Mathematical Sciences, vol. 59. Springer, New York (1985)

    Book  Google Scholar 

  14. Verhulst, F.: Nonlinear differential equations and dynamical systems. Universitext, Springer, Berlin (1996)

    Book  Google Scholar 

  15. Zang, H., Zhang, T.. Tian, Y.C., Tadé, M.O.: Limit cycles for the Kukles system. J. Dyn. Control Syst. 14, 283–298 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel Boulfoul.

Appendix: Formulas

Appendix: Formulas

In this appendix we recall some formulas that will be used during the paper, see for more details [1, 5]. For \(i\ge 0\) we have

\({\displaystyle \int \limits _{0}^{2\pi }} \cos ^{i}\theta \sin ^{j}\theta d\theta \ne 0,\)   if i and j even,

\( {\displaystyle \int \limits _{0}^{2\pi }} \cos ^{i}\theta \sin ^{j}\theta d\theta =\left\{ \begin{array}{ll} 0,&{}\quad \text {if }\,i ~~\text { or }~~j\, ~\text {odd,}\\ \frac{\pi \alpha _{k}}{2^{k-1}k!},&{}\quad \text {if }\, i=2k \,~~\text {and }~~j=0,\\ \frac{\pi \alpha _{k}}{2^{k}(k+1)!},&{}\quad \text {if } \, i=2k \, ~~\text {and} ~~ j=2,\\ \frac{3\pi \alpha _{k}}{2^{k+1}(k+2)!},&{}\quad \text {if } \,i=2k \, ~~\text { and }~~ j=4,\\ \frac{15\pi \alpha _{k}}{2^{k+2}(k+3)!}, &{}\quad \text {if } \, i=2k \, ~~\text {and}~~ \,j=6, \end{array} \right. \)

where \(\alpha _{i}=1\cdot 3\cdot 5\cdot \cdot \cdot (2i-1).\)

\( {\displaystyle \int \limits _{0}^{2\pi }} \cos ^{i}\theta \sin ^{j}\theta \sin (2l\theta ) d\theta \ne 0,\)    if i and j odd,

\({\displaystyle \int \limits _{0}^{2\pi }} \cos ^{i}\theta \sin ^{j}\theta \sin ((2l+1)\theta )d\theta \ne 0,\)   if i even and j odd,

\( {\displaystyle \int \limits _{0}^{2\pi }} \cos ^{i}\theta \sin ^{j}\theta \sin ((2l+1)\theta )d\theta =\left\{ \begin{array}{ll} 0,&{}\quad \text {if } i ~~\text { odd or }~~ j \,\text { even,}\\ \pi C_{i,l},&{} \quad \text {if }\, i~~\text { even~~and }~~ \, j=1,\, l\ge 0, \\ \pi K_{i,l},&{} \quad \text {if }\, i~~\text {even~~and }~~\,j=3,\, l\ge 0, \end{array} \right. \)

where \(C_{i,l}\) and \(K_{i,l}\) are non-zero constants.

\( \begin{array}{l} {\displaystyle \int \limits _{0}^{2\pi }} \cos ^{i}\theta \sin ^{j}\theta \sin (2l\theta )d\theta \\ \quad =\left\{ \begin{array}{ll} 0, &{}\quad \text {if } \,i \,~~ \text {or}~~ \, j \text {even,}\\ \frac{\pi (2k+1)\alpha _{k}}{2^{k}(k+2)!},&{}\quad \text {if }\, i=2k+1, \, j=1 \, ~~\text {and }~~\, l=1,\\ \frac{\pi k(2k+1)\alpha _{k}}{2^{k-1}(k+3)!},&{}\quad \text {if }\, i=2k+1, \,j=1\,~~\text { and }~~\,l=2,\\ \frac{3\pi (2k+1)\alpha _{k}}{2^{k+1}(k+3)!},&{}\quad \text {if }\, i=2k+1,\, j=3\, ~~\text { and }~~\, l=1,\\ \frac{3\pi (k-1)(2k+1)\alpha _{k}}{2^{k}(k+4)!},&{}\quad \text {if }\, i=2k+1\, \, j=3\,~~\text { and }~~\, l=2,\\ \pi \overset{\sim }{C}_{i,l},&{}\quad \text {if }\, i\, ~\text { odd~~and }~~\, j=1,\,l\ge 0,\\ \pi \overset{\sim }{K}_{i,l},&{}\quad \text {if }\,i\, ~\text {odd~~ and }~~\,j=3,\,l\ge 0, \end{array} \right. \end{array}\)

where \(\overset{\sim }{\text { }C}_{i,l}\) and \(\overset{\sim }{K}_{i,l}\) are non-zero constants. \( {\int _{0}^{\theta }} \cos ^{i}t\sin tdt=\frac{1}{i+1}\left( 1-\cos ^{i+1}\theta \right) ,\)

\( {\displaystyle \int \limits _{0}^{\theta }} \cos ^{2i+1}tdt= {\displaystyle \sum \limits _{l=0}^{i}} \gamma _{i,l}\sin (2l+1)\theta ,\) see [5, p. 153].

\( {\displaystyle \int \limits _{0}^{\theta }} \cos ^{2i+1}t\sin ^{2}tdt=\frac{-1}{2i+3}\cos ^{2i+2}\theta \sin \theta +\frac{1}{\left( 2i+3\right) } {\displaystyle \sum \limits _{l=0}^{i}} \gamma _{i,l}\sin (2l+1)\theta ,\) see [5, p. 151]

\( {\displaystyle \int \limits _{0}^{\theta }} \cos ^{2i}tdt=\frac{1}{2^{2i}}\left( \begin{array}{l} 2i\\ i \end{array} \right) \theta + {\displaystyle \sum \limits _{l=1}^{i}} \beta _{i,l}\sin (2l\theta ),\) see [5, p. 153],

where \(\gamma _{i,l}=\frac{1}{2^{2i}}\left( \begin{array}{l} 2i+1\\ i-l \end{array} \right) \frac{1}{2l+1},\)\(\beta _{i,l}=\frac{1}{2^{2i}}\left( \begin{array}{l} 2i\\ i+l \end{array} \right) \frac{1}{l}.\)

\( {\displaystyle \int \limits _{0}^{\theta }} \cos ^{i}t\sin ^{3}tdt=\frac{2}{(i+1)(i+3)}-\frac{1}{i+1}\cos ^{i+1} \theta +\frac{1}{i+3}\cos ^{i+3}\theta ,\)

\( {\displaystyle \int \limits _{0}^{\theta }} \cos ^{2}t\sin ^{2}tdt=\frac{1}{32}\left( 4\theta -\sin 4\theta \right) ,\)

\( {\displaystyle \int \limits _{0}^{\theta }} \sin ^{4}tdt=\frac{1}{32}\left( 12\theta -8\sin 2\theta +\sin 4\theta \right) ,\)

\( {\displaystyle \int \limits _{0}^{\theta }} \cos ^{4}tdt=\frac{1}{32}\left( 12\theta +8\sin 2\theta +\sin 4\theta \right) .\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mellahi, N., Boulfoul, A. & Makhlouf, A. Maximum Number of Limit Cycles for Generalized Kukles Polynomial Differential Systems. Differ Equ Dyn Syst 27, 493–514 (2019). https://doi.org/10.1007/s12591-016-0300-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0300-3

Keywords

Mathematics Subject Classification

Navigation