Skip to main content
Log in

Stage-Structured Cannibalism in a Ratio-Dependent System with Constant Prey Refuge and Harvesting of Matured Predator

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

A four dimensional stage-structured ratio-dependent predator-prey model with constant prey refuge is proposed and analyzed to study the effect of predation and cannibalism of the organisms at the highest trophic level with harvesting. Our analysis leads to different thresholds in terms of the model parameters acting as conditions under which the organisms associated with the system cannot thrive even in absence of predation. Local stability of the system is obtained in absence of one or more of the predators and in presence of all the predators. Moreover, it is shown that the system undergoes Hopf bifurcation when the carrying capacity of macro-algae crosses certain critical value. Computer simulations have been carried out to illustrate various analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morris Jr., J.A., Whitefield, P.E.: Biology, ecology, control and management of the invasive Indo-Pacific lionfish: an updated integrated assessment. NOAA Tech. Memo. NOS-NCCOS 99, 1–65 (2009)

    Google Scholar 

  2. Benkwitt, C.E.: Non-linear effects of invasive lionfish density on native coral-reef fish communities. Biol. Invasions 17, 1383–1395 (2015)

    Article  Google Scholar 

  3. Bhattacharyya, J., Pal, S.: Hysteresis in coral reefs under macroalgal toxicity and overfishing. J. Biol. Phys. 41(2), 151–172 (2015)

    Article  Google Scholar 

  4. Fishelson, L.: Experiments and observations on food consumption growth and starvation in Dendrochirus brachypterus and Pterois Volitans (Pteroinae, Scorpaenidae). Environ. Biol. Fishes 50, 391–403 (1997)

    Article  Google Scholar 

  5. Rotjan, R.D., Lewis, S.M.: Parrotfish abundance and selective corallivory on a Belizean coral reef. J. Exp. Mar. Biol. Ecol. 335, 292–301 (2006)

    Article  Google Scholar 

  6. Goreau, T.J., Hayes, R.: Coral bleaching and ocean “hot spots”. Ambio 23, 176–180 (1994)

    Google Scholar 

  7. Hare, J.A., Whitefield, P.E.: An integrated assessment of the introduction of lionfish (Pterois Volitans/miles complex) to the western Atlantic Ocean. NOAA Tech. Memo. NOS NCCOS 2, 1–21 (2003)

    Google Scholar 

  8. Albins, M.A., Hixon, M.A.: Invasive Indo-Pacific lionfish (Pterois Volitans) reduce recruitment of Atlantic coral-reef fishes. Mar. Ecol. Prog. Ser. 367, 233–238 (2008)

    Article  Google Scholar 

  9. Morris, J.A., Akins, J.L., Barse, A., Cerino, D., Freshwater, D.W., Green, S.J., Munoz, R.C., Paris, C., Whitefield, P.E.: Biology and ecology of invasive lionfishes, pterois miles and pterois volitans. Gulf Caribb. Fish. Inst. 61, 1–6 (2009)

    Google Scholar 

  10. Zhang, X., Chen, L., Neumann, A.U.: The stage-structured predator-prey model and optimal harvesting policy. Math. Biosci. 168(2), 201–210 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, W., Chen, L.: A predator-prey system with stage structure for predator. Comput. Math. Appl. 33(8), 83–91 (1997)

    Article  MathSciNet  Google Scholar 

  12. Rudolf, V.H.W.: The interaction of cannibalism and omnivory: consequences for community dynamics. Ecology 88, 2697–2705 (2007)

    Article  Google Scholar 

  13. Rudolf, V.H.W.: The impact of cannibalism in the prey on predator-prey dynamics. Ecology 89, 3116–3127 (2008)

    Article  Google Scholar 

  14. Lili, J., Chengqiang, W.: Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge. Nonlinear Anal. Real World Appl. 11, 2285–2295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, L., Chen, F., Chen, L.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal. Real World Appl. 11, 246–252 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator-prey models. Bull. Math. Biol. 61, 19–32 (1999)

    Article  MATH  Google Scholar 

  17. Kuang, Y.: Rich dynamics of Gause-type ratio-dependent predator prey system. Fields Instit. Commun. 21, 325–337 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator-prey system. J. Math. Biol. 43, 268–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hsu, S.B., Hwang, T.W., Kuang, Y.: Global analysis of the Michaelis-Menten type ratio-dependent predator-prey system. J. Math. Biol. 42, 489–506 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bhattacharyya, J., Pal, S.: Stage-structured cannibalism with delay in maturation and harvesting of an matured predator. J. Biol. Phys. 39, 37–65 (2013)

    Article  Google Scholar 

  21. Bhattacharyya, J., Pal, S.: The role of space in stage-structured cannibalism with harvesting of an matured predator. Comput. Math. Appl. 66, 339–355 (2013)

    Article  MathSciNet  Google Scholar 

  22. Bhattacharyya, J., Pal, S.: Dynamics of a stage-structured system with harvesting and discrete time delays. Syst. Sci. Control Eng. Open Access J. 2, 192–215 (2014)

    Article  Google Scholar 

  23. Akcakaya, H.R., Arditi, R., Ginzburg, L.R.: Ratio-dependent prediction: an abstraction that works. Ecology 76, 995–1004 (1995)

    Article  Google Scholar 

  24. Leard, B., Lewis, C., Rebaza, J.: Dynamics of ratio-dependent Predator–Prey models with nonconstant harvesting. Discrete Contin. Dyn. Syst. Ser. S 1(2), 303–315 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lenzini, P., Rebaza, J.: Nonconstant predator harvesting on ratio-dependent predator–prey models. Appl. Math. Sci. 4(13–16), 91–803 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Martin, A., Ruan, S.: Predator–prey models with delay and prey harvesting. J. Math. Biol. 43(3), 247–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smith, H.L., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  28. Butler, G.J., Hsu, S.B., Waltman, P.: Coexistence of competing predators in a chemostat. Math. Biol. 17, 133–151 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hofbauer, J., Sigmund, K.: On the stabilizing effect of predators and competitors on ecological communities. J. Math. Biol. 27(5), 537–548 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jiao, J., Chen, L., Juan, J.N., Torres, A.: Permanence and global attractivity of stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey. Appl. Math. Mech. Engl. Ed. 29(5), 653–663 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Siekmann, I., Malchow, H., Venturino, E.: An extension of the Beretta–Kuang model of viral diseases. Math. Biosci. Eng. 5, 549–565 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Morris Jr., J.A., Shertzer, K.W., Rice, J.A.: A stage-based matrix population model of invasive lionfish with implications for control. Biol. Invasions 13(1), 7–12 (2011)

    Article  Google Scholar 

  33. Chakraborty, K., Das, K., Kar, T.K.: Combined harvesting of a stage structured preypredator model incorporating cannibalism in competitive environment. C. R. Biol. 336, 34–45 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samares Pal.

Appendix

Appendix

Proof of boundedness of the system (Theorem 4.1)

\(\frac{dP}{dt}\le P(1-P)\) implies \(P(t)\le 1\) as \(t\rightarrow \infty \) and so corresponding to \(\epsilon _1>0\), there exists \(t_{\epsilon _1}>0\) such that \(P(t)\le 1+\epsilon _1\), for all \(t\ge t_{\epsilon _1}\). Let \(\Sigma (t)= P(t)+x(t)+y(t)+z(t)\) Then \(\frac{d}{dt}(\Sigma (t))\le 1-(\Sigma (t))D\), where \(D=\min \{1,D_1,D_2,D_3\}\), for all \(t\ge t_{\epsilon _1}\). Let u(t) be the solution of \(\frac{du}{dt}+uD=1,\) satisfying \(u(0)=\Sigma (0)\). Then \(u(t)=\frac{1}{D}+\left( \Sigma (0)-\frac{1}{D}\right) e^{-tD}\rightarrow \frac{1}{D}\) as \(t\rightarrow \infty .\) By comparison, it follows that \(\lim _{t\rightarrow \infty }\sup [P(t)+x(t)+y(t)+z(t)]<\frac{1}{D}<\infty ,\) proving the theorem. \(\square \)

Proof of Theorem 4.2

(i) Since \(P(t)\le 1\) as \(t\rightarrow \infty \), corresponding to \(\epsilon _1>0\), there exists \(t_{\epsilon _1}>0\) such that \(P(t)\le 1+\epsilon _1\), for all \(t\ge t_{\epsilon _1}\). If \(m_1\le D_1\), then \(\frac{dx}{dt}\le x(m_1-D_1)\) and so \(x(t)\le c_1e^{(m_1-D_1)t}\rightarrow 0\) as \(t\rightarrow \infty \). Thus \(lim_{t\rightarrow \infty }x(t)=0\) and consequently \(lim_{t\rightarrow \infty }y(t)=0=lim_{t\rightarrow \infty }z(t)\). (ii) For all \(t\ge t_{\epsilon _1}\), we have \(\frac{dx}{dt}\le x(m_1-D_1)\left( 1-\frac{\lambda x}{1+\epsilon _1}\right) \). Also, \(x(t)\le \frac{1}{D}\) as \(t\rightarrow \infty \), where \(D=\min \{1,D_1,D_2,D_3\}\). So, corresponding to \(\epsilon _1>0\), there exists \(t_{\epsilon _1}^{'}>0\) such that \(x(t)\le \frac{1}{D}+\epsilon _1\), for all \(t\ge t_{\epsilon _1}^{'}\). Let \(T_\epsilon =\max \{t_{\epsilon _1},t_{\epsilon _1}^{'}\}\). Therefore, for all \(t\ge T_\epsilon \), \(\frac{dx}{dt}\le 0\) if \(m_1>D_1\) and \(\lambda >\frac{(1+\epsilon _1)}{\frac{1}{D}+\epsilon _1}\). Hence \(lim_{t\rightarrow \infty }x(t)=0\) if \(m_1>D_1\) and \(\lambda >D\), and consequently, \(lim_{t\rightarrow \infty }y(t)=0=lim_{t\rightarrow \infty }z(t)\).\(\square \)

Proof of Lemma 5.1.1

  1. (i)

    \((u,v,w,z)\rightarrow E_{00}\) as \(t\rightarrow \infty \) implies that \(u,v,w,z\rightarrow 0\) as \(t\rightarrow \infty \). Since \(v=\frac{x}{z}\) and \(v,z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that x converges to zero faster than z as \(t\rightarrow \infty \). Since \(w=\frac{y}{z}\) and \(w,z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that y converges to zero faster than z as \(t\rightarrow \infty \). Also, \(u=\frac{P}{x}\) and \(u,x\rightarrow 0\) as \(t\rightarrow \infty \), implies that P converges to zero faster than x as \(t\rightarrow \infty \).

Conversely, \((P,x,y,z)\rightarrow E_0\) with P converges to zero faster than x and xy converge to zero faster than z as \(t\rightarrow \infty \) implies \(u,v,w\rightarrow 0\) as \(t\rightarrow \infty \) and so \((u,v,w,z)\rightarrow E_{00}\) as \(t\rightarrow \infty \).

  1. (ii)

    Again, \((u,v,w,z)\rightarrow E_{01}\) as \(t\rightarrow \infty \) implies that \(u\rightarrow u_{01}\) and \(v,w,z\rightarrow 0\) as \(t\rightarrow \infty \). Since \(v=\frac{x}{z}\) and \(v,z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that x converges to zero at a faster rate then \(z\rightarrow 0\) for \(t\rightarrow \infty \). Since \(w=\frac{y}{z}\) and \(w,z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that y converges to zero at a faster rate than z for \(t\rightarrow \infty \). Also, \(u=\frac{P}{x}\) with \(u\rightarrow u_{01}>0\) and \(x\rightarrow 0\) as \(t\rightarrow \infty \), implies that P converges to zero at a finite rate as x for \(t\rightarrow \infty \).

Conversely, \((P,x,y,z)\rightarrow E_0\) with P converges to zero at a finite rate as x and xy both converge to zero faster than z as \(t\rightarrow \infty \) implies u converges to some positive constant and \(v,w\rightarrow 0\) as \(t\rightarrow \infty \) and so \((u,v,w,z)\rightarrow E_{01}\) as \(t\rightarrow \infty \).

  1. (iii)

    \((u,v,w,z)\rightarrow E_{02}\) as \(t\rightarrow \infty \) implies that \(u,z\rightarrow 0\) and \(v\rightarrow \ v_{02},w\rightarrow \ w_{02}\) as \(t\rightarrow \infty \). Since \(v=\frac{x}{z}\) with \(v\rightarrow v_{02}\) and \(z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that x converges to zero at a finite rate as z for \(t\rightarrow \infty \). Since \(w=\frac{y}{z}\) with \(w\rightarrow w_{02}\) and \(z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that y converges to zero at a finite rate as z for \(t\rightarrow \infty \). Also, \(u=\frac{P}{x}\) and \(u,x\rightarrow 0\) as \(t\rightarrow \infty \), implies that P converges to zero faster than x as \(t\rightarrow \infty \).

Conversely, \((P,x,y,z)\rightarrow E_0\) with P converges to zero faster than x and xy converge to zero at a finite rate as z for \(t\rightarrow \infty \) implies \(u\rightarrow 0\) as \(t\rightarrow \infty \) and uw converge to some positive constant as \(t\rightarrow \infty \) and so \((u,v,w,z)\rightarrow E_{02}\) as \(t\rightarrow \infty \).

  1. (iv)

    \((u,v,w,z)\rightarrow E_{03}\) as \(t\rightarrow \infty \) implies that \(z\rightarrow 0\) and \(u\rightarrow \ u_{03}, v\rightarrow \ v_{03},w\rightarrow \ w_{03}\) as \(t\rightarrow \infty \). Since \(v=\frac{x}{z}\) with \(v\rightarrow v_{03}\) and \(z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that x converges to zero at a finite rate as z for \(t\rightarrow \infty \). Again, \(w=\frac{y}{z}\) with \(w\rightarrow w_{03}\) and \(z\rightarrow 0\) as \(t\rightarrow \infty \). Therefore, it follows that y converges to zero at a finite rate as z for \(t\rightarrow \infty \). Also, \(u=\frac{P}{x}\) and \(u\rightarrow u_{03}\) and \(x\rightarrow 0\) as \(t\rightarrow \infty \), implies that P converges to zero at a finite rate as x for \(t\rightarrow \infty \).

Conversely, \((P,x,y,z)\rightarrow E_0\) with P converges to zero at a finite rate as x and xy converge to zero at a finite rate as z for \(t\rightarrow \infty \) implies uvw converge to some positive constant as \(t\rightarrow \infty \) and so \((u,v,w,z)\rightarrow E_{03}\) as \(t\rightarrow \infty \).\(\square \)

Proof of Lemma 5.1.2

The variational matrix at \(E_{00}\) is

$$\begin{aligned} V(E_{00})=\left[ \begin{array}{cccc} 1+D_1-\frac{m_1}{a_1}+\frac{m_2}{a_2} &{} 0 &{} 0 &{}0 \\ 0 &{}D_3-D_1+\frac{h}{c}+\frac{m_1}{a_1}-\frac{m_2}{a_2} &{}0 &{}0\\ 0 &{}\frac{m_2}{a_2} &{} -\mu -D_2+D_3+\frac{h}{c} &{}0\\ 0 &{}0 &{}0 &{}-D_3-\frac{h}{c} \end{array} \right] \end{aligned}$$
(6)

The eigenvalues are \(\rho _{01}=-D_3-\frac{h}{c}<0, \rho _{02}=-\mu -D_2+D_3+\frac{h}{c}, \rho _{03}=D_3-D_1+\frac{h}{c}+\frac{m_1}{a_1}-\frac{m_2}{a_2}\) and \( \rho _{04}=1+D_1-\frac{m_1}{a_1}+\frac{m_2}{a_2}\).

If \(\frac{m_1}{a_1}-\frac{m_2}{a_2}-D_1>0\), then \(\rho _{03}>0\).

If \(\frac{m_1}{a_1}-\frac{m_2}{a_2}-D_1<0\), then \(\rho _{04}>0\)

and if \(\frac{m_1}{a_1}-\frac{m_2}{a_2}-D_1=0\), then \(\rho _{03}\) and \(\rho _{04}>0\). Therefore, the system (3) is always unstable at \(E_{00}\). \(\square \)

Proof of Lemma 5.1.3

$$\begin{aligned} V(E_{01})=\left[ \begin{array}{cccc} U^0_u|_{E_{01}}&{} -\frac{m_2u_{01}^2}{a_2^2} &{} 0 &{}0 \\ 0 &{}D_3-D_1+\frac{h}{c}+\frac{m_1u_{01}}{a_1+u_{01}}-\frac{m_2}{a_2} &{}0 &{}0\\ 0 &{}\frac{m_2}{a_2} &{} -\mu -D_2+D_3+\frac{h}{c} &{}0\\ 0 &{}0 &{}0 &{}-D_3-\frac{h}{c} \end{array} \right] \end{aligned}$$
(7)

where \(U^0_u|_{E_{01}}=1+D_1+\frac{m_2}{a_2}-m_1\frac{(a_1+u_{01})(1+2u_{01})-u_{0}(1+u_{01})}{(a_1+u_{01})^2}\).

The eigenvalues are \(\rho _{11}=-D_3-\frac{h}{c}<0, \rho _{12}=-\mu -D_2+D_3+\frac{h}{c}, \rho _{13}=D_3-D_1+\frac{h}{c}+\frac{m_1u_{01}}{a_1+u_{01}}-\frac{m_2}{a_2}\) and \( \rho _{14}=1+D_1+\frac{m_2}{a_2}-m_1\frac{(a_1+u_{01})(1+2u_{01})-u_{0}(1+u_{01})}{(a_1+u_{01})^2}\).

Therefore, the system (3) is stable at \(E_{01}\) if \(h>c(D_3-D_2-\mu ), A_{01}>1+D_1+\frac{m_2}{a_2}\) and \(u_{01}<\frac{a_1\{a_2c(D_1-D_3)+m_2c-ha_2\}}{a_2c(m_1+D_3-D_1)+ha_2-m_2c}\), where \(A_{01}=m_1\frac{(a_1+u_{01})(1+2u_{01})-u_{01}(1+u_{01})}{(a_1+u_{01})^2}\). \(\square \)

Proof of Lemma 5.1.4

$$\begin{aligned} V(E_{02})=\left[ \begin{array}{cccc} 1+D_1-\frac{m_1}{a_1}+\frac{m_2}{a_2+v_{02}}&{} 0 &{} 0 &{}0 \\ \frac{m_1v_{02}}{a_1} &{}V^0_v|_{E_{02}} &{}-\mu v_{02} &{}-\frac{v_{02}h}{c^2}\\ 0 &{}\frac{m_2a_2}{(a_2+v_{02})^2} &{} W^0_w|_{E_{02}} &{}-\frac{w_{02}h}{c^2}\\ 0 &{}0 &{}0 &{}\mu w_{02}-D_3-\frac{h}{c} \end{array} \right] \end{aligned}$$
(8)

where \(V^0_v|_{E_{02}}=D_3-D_1-\mu w_{02}+\frac{h}{c}-\frac{m_2a_2}{(a_2+v_{02})^2}\) and \(W^0_w|_{E_{02}}=-\mu (1+2w_{02})+D_3-D_2+\frac{h}{c}-\frac{m_3w_{02}(2a_3+w_{02})}{(a_3+w_{02})^2}\).

Two eigenvalues are \(\rho _{21}=w_{02}-D_3-\frac{h}{c}\) and \(\rho _{22}=1+D_1-\frac{m_1}{a_1}+\frac{m_2}{a_2+v_{02}}\).

The other two eigenvalues are given by \(\rho ^2-\rho (V^0_v|_{E_{02}}+W^0_w|_{E_{02}})+V^0_v|_{E_{02}}W^0_w|_{E_{02}}+\frac{\mu v_{02}m_2a_2}{(a_2+v_{02})^2}=0\).

Therefore, the system (3) is locally asymptotically stable if \(h>c(\mu w_{02}-D_3), v_{02}>\frac{a_1m_2-a_2\{m_1-a_1(1+D_1)\}}{m_1-a_1(1+D_1)}, V^0_v|_{E_{02}}+W^0_w|_{E_{02}}<0\) and \(V^0_v|_{E_{02}}W^0_w|_{E_{02}}>0\). \(\square \)

Proof of Lemma 5.1.5

$$\begin{aligned} V(E_{03})=\left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} U^0_u|_{E_{03}}&{} U^0_v|_{E_{03}} &{} 0 &{}U^0_z|_{E_{03}} \\ V^0_u|_{E_{03}} &{}V^0_v|_{E_{03}} &{}V^0_w|_{E_{03}} &{}V^0_z|_{E_{03}}\\ 0 &{}W^0_v|_{E_{03}} &{} W^0_w|_{E_{03}} &{}W^0_z|_{E_{03}}\\ 0 &{}0 &{}0 &{}Z^0_z|_{E_{03}} \end{array} \right] \end{aligned}$$
(9)

where \(U^0_u|_{E_{03}}=1+D_1+\frac{m_2}{a_2+v_{03}}-m_1\frac{(a_1+u_{03})(1+2u_{03})-u_{03}(1+u_{03})}{(a_1+u_{03})^2}\),

\(U^0_v|_{E_{03}}=-\frac{m_2u_{03}}{(a_2+v_{03})^2},\)

\(U^0_z|_{E_{03}}=-u^2_{03}v_{03},\)

\(V^0_u|_{E_{03}}=\frac{m_1a_1v_{03}}{(a_1+u_{03})^2},\)

\(V^0_v|_{E_{03}}=D_3-D_1-\mu w_{03}+\frac{h}{c}+\frac{m_1u_{03}}{a_1+u_{03}}-\frac{m_2a_2}{(a_2+v_{03})^2},\)

\(V^0_w|_{E_{03}}=-\mu v_{03},\)

\(V^0_z|_{E_{03}}=-\frac{hv_{03}}{c^2},\)

\(W^0_v|_{E_{03}}=\frac{m_2a_2}{(a_2+v_{03})^2},\)

\(W^0_w|_{E_{03}}=D_3-D_2-\mu -2\mu w_{03}+\frac{h}{c}-\frac{m_3a_3}{(a_3+w_{03})^2},\)

\(W^0_z|_{E_{03}}=-\frac{hw_{03}}{c^2},\)

\(Z^0_z|_{E_{03}}=\mu w_{03}-\frac{h}{c}.\)

One eigenvalue is \(\mu w_{03}-\frac{h}{c},\) the three other eigenvalues are obtained form the equation

\(\eta ^3+A_{03}\eta ^2+B_{03}\eta +C_{03}=0\), where

\(A_{03}=-(U^0_u|_{E_{03}}+V^0_v|_{E_{03}}+W^0_w|_{E_{03}}), B_{03}=U^0_u|_{E_{03}}(V^0_v|_{E_{03}}+W^0_w|_{E_{03}})+V^0_v|_{E_{03}}W^0_w|_{E_{03}}-V^0_w|_{E_{03}}W^0_v|_{E_{03}}, C_{03}=U^0_v|_{E_{03}}V^0_u|_{E_{03}}W^0_v|_{E_{03}}-U^0_u|_{E_{03}}(V^0_v|_{E_{03}}W^0_w|_{E_{03}}-V^0_w|_{E_{03}}W^0_v|_{E_{03}})\).

Therefore, the system (3) is stable at \(E_{03}\) if \(w_{03}>\frac{h}{c\mu }, A_{01}>0\) and \(A_{03}B_{03}>C_{03}\). \(\square \)

Proof of Lemma 5.2.1

(i) \((P,u,v,z)\rightarrow E_{10}\) as \(t\rightarrow \infty \) implies that \(P\rightarrow 1\) and \(u,v,z\rightarrow 0\) as \(t\rightarrow \infty \). Since \(u=\frac{x}{z}\) and \(u,z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that x converges to zero faster than z as \(t\rightarrow \infty \). Since \(v=\frac{y}{z}\) and \(v,z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that y converges to zero faster than z as \(t\rightarrow \infty \).

Conversely, \((P,x,y,z)\rightarrow E_1\) with \(P\rightarrow 1\) as \(t\rightarrow \infty \) and xy converge to zero faster than z as \(t\rightarrow \infty \) implies \(u,v\rightarrow 0\) as \(t\rightarrow \infty \) and so \((P,u,v,z)\rightarrow E_{10}\) as \(t\rightarrow \infty \).

(ii) Again, \((P,u,v,z)\rightarrow E_{11}\) as \(t\rightarrow \infty \) implies that \(P\rightarrow 1\) and \(u\rightarrow u_1,v\rightarrow v_1, z\rightarrow 0\) as \(t\rightarrow \infty \). Since \(u=\frac{x}{z}\) with \(u\rightarrow u_1>0,z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that x converges to zero at a finite rate as \(z\rightarrow 0\) for \(t\rightarrow \infty \). Since \(v=\frac{y}{z}\) and \(v\rightarrow v_1>0,z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that y converges to zero at a fine rate as z for \(t\rightarrow \infty \).

Conversely, \((P,x,y,z)\rightarrow E_1\) with \(P\rightarrow 1\) as \(t\rightarrow \infty \) and xy both converge to zero at a finite rate as z for \(t\rightarrow \infty \) implies uv converge to some positive constants as \(t\rightarrow \infty \) and so \((P,u,v,z)\rightarrow E_{11}\) as \(t\rightarrow \infty \). \(\square \)

Proof of Lemma 5.2.2

The variational matrix at \(E_{10}\) is

$$\begin{aligned} V(E_{10})=\left[ \begin{array}{cccc} -1 &{} 0 &{} 0 &{}0 \\ 0 &{}D_3-D_1-\frac{m_2}{a_2}+\frac{h}{c} &{}0 &{}0\\ 0 &{}\frac{m_2}{a_2} &{} D_3-D_2-\mu -\frac{m_3}{a_3}+\frac{h}{c} &{}0\\ 0 &{}0 &{}0 &{}-D_3-\frac{h}{c} \end{array} \right] \end{aligned}$$
(10)

At \(E_{10}\) the eigenvalues of the variational matrix are \(-1, D_3-D_1+\frac{h}{c}-\frac{m_2}{a_2},D_3-D_2-\mu +\frac{h}{c}-\frac{m_3}{a_3}\) and \(-D_3-\frac{h}{c}\).

Therefore, the system is stable at \(E_{10}\) if \(h<\min \left\{ D_1-D_3+\frac{m_2}{a_2},\mu +D_2-D_3+\frac{m_3}{a_3}\right\} .\) \(\square \)

Proof of Lemma 5.2.3

The variational matrix at \(E_{11}\) is

$$\begin{aligned} V(E_{11})=\left[ \begin{array}{cccc} -1 &{} 0 &{} 0 &{}-m_1u_1\\ 0 &{}V^1_u|_{E_{11}} &{}-\mu u_1 &{}-m_1a_1u_1^2+\frac{hu_1}{c^2}\\ 0 &{}\frac{m_2a_2}{(a_2+u_1)^2} &{}W^1|_{E_{11}} &{}-\frac{v_1h}{c^2}\\ 0 &{}0 &{}0 &{} \mu v_1-D_3-\frac{h}{c} \end{array} \right] \end{aligned}$$
(11)

where \(V^1_u|_{E_{11}}=m_1u_1-D_1+D_3+\frac{h}{c}-v_1\mu -\frac{m_2a_2}{(a_2+u_1)^2}\)

and \(W^1|_{E_{11}}=-\mu -D_2+D_3+\frac{h}{c}-2v_1\mu -\frac{m_3a_3}{(a_3+v_1)^2}\).

The two eigenvalues are \(-1\) and \(v_1\mu -D_3-\frac{h}{c}\). Other two eigenvalues are given by the equation \(\eta ^2+A_{11}\eta +B_{11}=0\),

where \(A_{11}=\mu (1+3v_1)+D_2+D_1-2D_3-m_1u_1-\frac{2h}{c}+\frac{m_2a_2}{(a_1+u_1)^2}+\frac{m_3a_3}{(a_3+v_1)^2}\) and \(B_{11}=\left\{ D_3-D_1-\mu v_1+m_1u_1+\frac{h}{c}-\frac{m_2a_2}{(a_3+u_1)^2}\right\} \left\{ D_3-D_2-\mu (1+2v_1)+\frac{h}{c}-\frac{m_3a_3}{(a_3+v_1)^2}\right\} +\frac{\mu m_2a_2u_1}{(a_2+u_1)^2}.\)

Therefore, the system (4) is stable at \(E_{11}\) if \(h>c(\mu v_1-D_3)\) and \(A_{11},B_{11}>0\). \(\square \)

Proof of Lemma 5.3.1

\((P,x,w,z)\rightarrow E_{20}\) as \(t\rightarrow \infty \) implies that \(P\rightarrow \frac{\lambda -D_1}{\lambda }, x\rightarrow \frac{\lambda -D_1}{\lambda ^2}, w\rightarrow w_1\) and \(z\rightarrow 0\) as \(t\rightarrow \infty \). Since \(w=\frac{y}{z}\) and \(z\rightarrow 0\) as \(t\rightarrow \infty \), it follows that y converges to zero at a finite rate as z for \(t\rightarrow \infty \).

Conversely, \((P,x,y,z)\rightarrow E_2\) with \(P\rightarrow \frac{\lambda -D_1}{\lambda }, x\rightarrow \frac{\lambda -D_1}{\lambda ^2}, w\rightarrow w_1\) and y converge to zero at a finite rate as z for \(t\rightarrow \infty \) implies w converges to some positive constant as \(t\rightarrow \infty \) and so \((P,x,w,z)\rightarrow E_{20}\) as \(t\rightarrow \infty \). \(\square \)

Proof of Lemma 5.3.2

The variational matrix at \(E_{20}\) is

$$\begin{aligned} V(E_{20})=\left[ \begin{array}{cccc} 1-\frac{2(1-\lambda )}{\lambda }-\frac{a_1D_1^2}{m_1\lambda ^2} &{} -\frac{D_1^2}{m_1} &{} 0 &{}0\\ \frac{a_1D_1^2}{m_1} &{}\frac{-D_1(m_1-D_1)}{m_1} &{}0 &{}-\frac{m_2a_2\lambda .^2}{\lambda -D_1}\\ 0 &{}0 &{}W^2_w|_{E_{20}} &{}m_2+\frac{hw_1}{c^2}\\ 0 &{}0 &{}0 &{} \mu w_1-D_3-\frac{h}{c} \end{array} \right] \end{aligned}$$
(12)

where \(W^2_w|_{E_{20}}=D_3-D_2-\mu (1+2w_1)+\frac{h}{c}-\frac{m_3a_3}{(a_3+w_1)^2}\).

The two eigenvalues are \(\mu w_1-D_3-\frac{h}{c}\) and \(D_3-D_2-\mu (1+2w_1)+\frac{h}{c}-\frac{m_3a_3}{(a_3+w_1)^2}\).

Other two eigenvalues are given by the equation \(\eta ^2+A_{21}\eta +B_{21}=0\), where

\(A_{21}=1+D_1-\frac{2D_1}{\lambda }-\frac{D_1^2(\lambda ^2-a_1^2)}{m_1\lambda ^2}\) and \(B_{21}=\frac{a_1D_1^4}{m_1^2}+D_1(m_1-D_1)\left( \frac{1}{m_1}+\frac{a_1D_1^2}{m_1^2\lambda ^2}-\frac{2D_1}{m_1\lambda }\right) \).

Therefore, the system (5) is locally asymptotically stable at \(E_{20}\) if \( \mu w_1-D_3<\frac{h}{c}<\mu (1+2w_1)+D_2-D_3+\frac{m_3a_3}{(a_3+w_1)^2}\) and \(A_{21},B_{21}>0\). \(\square \)

Proof of Lemma 5.4.1

Since \(\lim _{t\rightarrow \infty }\sup [P(t)+x(t)+y(t)+z(t)]\le \frac{1}{D}\), where \(D=\min \{D_1,D_2,D_3\}\), it follows that there exists \(T_1>0\) and \(M_i<\frac{1}{D}, (i=1,2,3)\), such that for all \(t\ge T_1\), we have \(x(t)\le M_1, y(t)\le M_2\) and \(z(t)\le M_3\).

Now if \(m_1<a_1\), then \(\frac{dP}{dt}|_{P=P_1}\ge 0\) implies that there exists \(T_2>0\) such that \(P(t)\ge P_1=1-\frac{m_1}{a_1}>0\) for all \(t\ge T_2\).

Again, \(\frac{dP}{dt}|_{P=1}\le 0\) implies that there exists \(T_3>0\) such that \(P(t)\le 1\), for all \(t\ge T_3\).

Therefore, \(P_1\le P(t)\le 1\), for all \(t\ge \max \{T_2,T_3\}\).

For \(t>\max \{T_1,T_2,T_3\}\) we have \(\frac{dx}{dt}\ge x\left( \frac{m_1P_1}{a_1x+P_1}-D_1-\frac{m_2}{a_2}\right) \)

This implies \(\frac{dx}{dt}\mid _{x=x_1}\ge 0\) for \(t>\max \{T_1,T_2,T_3\}\) where \(x_1=\frac{(a_1-m_1)(m_1-D_1)\left( a_2-\frac{m_2\lambda }{a_1D_1}\right) }{a_2(a_1-m_1)+a_1m_2}\).

If \(\lambda <\min \left\{ D,\frac{a_1a_2D_1}{m_2}\right\} \), then \(x_1>0,\) and so in this case there exists \(T_4>0\) such that \(x_1\le x(t)\le M_1\) for all \(t>T_4\).

Again for \(t>T_4\) we have

\(\frac{dy}{dt}\ge \frac{m_2x_1z}{a_2M_3+x_1}-(\mu +D_2)M_2-\frac{m_3M_2}{a_3}\).

Therefore, \(\frac{dy}{dt}>0\) if \(z(t)>\frac{M_2(a_2M_3+x_1)\{a_3(\mu +D_2)+m_3\}}{a_3m_2x_1}>0\), for all \(t>T_4\).

Let there exists \(z_1\) such that \(\frac{M_2(a_2M_3+x_1)\{a_3(\mu +D_2)+m_3\}}{a_3m_2x_1}<z_1<M_3.\)

Therefore, \(\frac{dy}{dt}>0\) for \(z(t)\ge z_1>0 \forall t \ge T_4\) and so in this case \(\exists T_5>0\) and \(0<y_1<M_2\) such that \(y(t)\ge y_1, \forall t\ge T_5.\)

Therefore, \(\forall t\ge T_5\), if \(z(t)\ge z_1\) then \(y_1\le y(t)\le M_2\) and \(z_1\le z(t)\le M_3\).

Let \(T=\max \{T_1,T_2,\ldots ,T_5\}\). Then for \(t>T\) if \(D_1<m_1<a_1\) and \(\lambda <\min \left\{ D,\frac{a_1a_2D_1}{m_2}\right\} \) hold, then there exists finite positive real numbers \( P_1, x_1, y_1, z_1, M_1, M_2, M_3\) with \(M_1+M_2+M_3<\frac{1}{D}, P_1=1-\frac{m_1}{a_1}, x_1=\frac{(a_1-m_1)(m_1-D_1)\left( a_2-\frac{m_2\lambda }{a_1D_1}\right) }{a_2(a_1-m_1)+a_1m_2}\) and \(z_1>\frac{M_2(a_2M_3+x_1)\{a_3(\mu +D_2)+m_3\}}{a_3m_2x_1}\) such that \(P_1\le P(t)\le 1, x_1 \le x(t) \le M_1, y_1 \le y(t) \le M_2, z_1 \le z(t) \le M_3\). \(\square \)

Proof of Lemma 5.4.2

The characteristic equation of the variational matrix at \(E^*\) is

\(u^4+Q_1u^3+Q_2u^2+Q_3u+Q_4=0\), where

\(Q_1=-F^1_P|_{E^*}-F^2_x|_{E^*}-F^3_y|_{E^*}-F^4_z|_{E^*}, Q_2=(F^1_P|_{E^*}+F^2_x|_{E^*})(F^3_y|_{E^*}+F^4_z|_{E^*})+F^1_P|_{E^*}F^2_x|_{E^*}-F^1_x|_{E^*}F^2_P|_{E^*}+F^3_y|_{E^*}F^4_z|_{E^*}-\mu F^3_z|_{E^*}, Q_3=(\mu F^3_z|_{E^*}-F^3_y|_{E^*}F^4_z|_{E^*})(F^1_P|_{E^*}+F^2_x|_{E^*})+(F^1_x|_{E^*}F^2_P|_{E^*}-F^1_P|_{E^*}F^2_x|_{E^*})(F^3_y|_{E^*}+F^4_z|_{E^*})-\mu F^2_z|_{E^*}F^3_x|_{E^*}\)

and \(Q_4=\mu F^1_P|_{E^*}F^2_z|_{E^*}F^3_x|_{E^*}+(F^1_P|_{E^*}F^2_x|_{E^*}-F^1_x|_{E^*}F^2_P|_{E^*})(F^3_y|_{E^*}F^4_z|_{E^*}-\mu F^3_z|_{E^*})\), with

\(F^1_P|_{E^*}=1-2P^*-\frac{m_1a_1x^{*2}}{(a_1x^*+P^*)^2}; F^1_x|_{E^*}=-\frac{m_1P^{*2}}{(a_1x^*+P^*)^2}; F^2_P|_{E^*}=\frac{m_1a_1x^{*2}}{(a_1x^*+P^*)^2}; F^2_x|_{E^*}=\frac{m_1P^{*2}}{(a_1x^*+P^*)^2}-D_1-\frac{m_2a_2z^{*2}}{(a_2z^*+x^*)^2}; F^2_z|_{E^*}=-\frac{m_2x^{*2}}{(a_2z^*+x^*)^2}; F^3_x|_{E^*}=\frac{m_2a_2z^{*2}}{(a_2z^*+x^*)^2}; F^3_y|_{E^*}=-\mu -D_2-\frac{m_3a_3z^{*2}}{(a_3z^*+y^*)^2}; F^3_z|_{E^*}=\frac{m_2x^{*2}}{(a_2z^*+x^*)^2}-\frac{m_3y^{*2}}{(a_3z^*+y^*)^2}; F^4_y|_{E^*}=\mu ; F^4_z|_{E^*}=-D_3-\frac{hc}{(c+z^*)^2}\).

The roots of this equation will have negative real parts if \(Q_1>0\) and \(Q_1Q_2>Q_3\) and \(Q_1Q_2Q_3=Q_3^2+Q_1^2Q_4\).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, J., Pal, S. Stage-Structured Cannibalism in a Ratio-Dependent System with Constant Prey Refuge and Harvesting of Matured Predator. Differ Equ Dyn Syst 24, 345–366 (2016). https://doi.org/10.1007/s12591-016-0299-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0299-5

Keywords

Navigation