Skip to main content
Log in

Effect of Oblateness of an Artificial Satellite on the Orbits Around the Triangular Points of the Earth–Moon System in the Axisymmetric ER3BP

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Using a semi-analytic approach, the effect of oblateness of an artificial satellite on the periodic orbits around the triangular Lagrangian points of the Earth–Moon system is studied. The primaries in this system move in elliptic orbits about their common barycenter, hence we have an elliptic restricted three-body problem. The frequencies of the long and short orbits of the periodic motion are affected by the oblateness of the primaries (Earth and Moon) and of the third body (artificial satellite); and so are their eccentricities, semi-major and semi-minor axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. AbdulRaheem, A., Singh, J.: Combined effects of perturbations, radiation and oblateness on the stability of equilibrium points in the restricted three-body problem. Astron. J. 131, 1880–1885 (2006)

    Article  Google Scholar 

  2. AbdulRaheem, A., Singh, J.: Combined effects of perturbations, radiation and oblateness on the periodic orbits in the restricted three-body problem. Astrophys. Space Sci. 317, 9–13 (2008)

    Article  MATH  Google Scholar 

  3. Abouelmagd, E.I.: Existence and stability of triangular points in the restricted three-body problem with numerical applications. Astrophys. Space Sci. 342(1), 45 (2012)

    Article  MathSciNet  Google Scholar 

  4. Abouelmagd, E.I., El-Shaboury, S.M.: Periodic orbits under combined effects of oblateness and radiation in the restricted problem of three bodies. Astrophys. Space Sci. 341(2), 331 (2012)

    Article  MATH  Google Scholar 

  5. Ammar, M.K.: The effect of solar radiation pressure on the Lagrangian points in the elliptic restricted three-body problem. Astrophys. Space Sci. 313, 393 (2008)

    Article  MATH  Google Scholar 

  6. Ammar, M.K.: Third-order secular solution of the variational equations of motion of a satellite in orbit around a non-spherical planet. Astrophys. Space Sci. 340(1), 43 (2012)

    Article  MATH  Google Scholar 

  7. Arutyunyan, G.G., Sedrakyan, D.M., Chubaryan, E.V.: Rotating white dwarfs in the general relativity theory. Astrophysics 7, 274–280 (1971)

    Article  Google Scholar 

  8. Boshkayev, K., Quevedo, H., Ruffini, R.: Gravitational field of compact objects in general relativity. Phys. Rev. D 86, Article ID: 064043 (2012)

  9. Bruno, A.D.: The restricted 3-body problem: plane periodic orbits. Walter de Gruyter, Berlin (1994)

    Book  Google Scholar 

  10. Charlier, C.I.: Die Mechanik des Himmels. Walter de Gryter and Co, Berlin (1899)

    MATH  Google Scholar 

  11. Chao, F.B.: Earth’s oblateness and its temporal variations. Comptes Rendus Geosci. 338, 1123 (2006)

    Article  Google Scholar 

  12. Chenciner, A.: Three body problem. Scholarpedia 2(10), 2111 (2007)

    Article  Google Scholar 

  13. Domiciano de Sousa, A., Kervella, P., Jankov, S., Abe, L., Vakili, F., di Folco, E., Paresce, F.: The spinning-top Be star Achernar from VLTI–VINCI. Astron. Astrophys. 407, 147–163 (2003)

    Article  Google Scholar 

  14. Du, Y.J., Xu, R.X., Qiao, G.J., Han, J.L.: Formation of sub-millisecond pulsars and possibility of detection. MNRAS 399, 1587–1596 (2009)

    Article  Google Scholar 

  15. Dufton, P.L., Dunstall, P.R., Brott, M., Cantiello, M., de Koter, de Mink, A. Frase, M.: The VLT-FLAMES Tarantula Survey: the fastest rotating O-type star and shortest period LMC pulsar-remnants of a supernova disrupted binary? Astropyhs. J. Lett. 743, id. L22, 6 (2011)

  16. Dutt, P., Sharma, R.K.: Analysis of periodic and quasi-periodic orbits in the Earth–Moon system. J. Guid. Control Dyn. 33, 1010–1017 (2010)

    Article  Google Scholar 

  17. Elipe, A., Ferrer, S.: On the equilibrium solutions in the circular planar restricted three rigid bodies problem. Celestial Mech. 37, 59–70 (1985). doi:10.1007/BF01230341

    Article  Google Scholar 

  18. Gutzwiller, M.: The oldest three-body problem. Rev. Mod. Phys. 70, 2 (1998)

    Article  Google Scholar 

  19. Hadjidemetriou, J.D.: Periodic orbits. Celest. Mech. 34, 379 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hartle, J.B.: Slowly rotating relativistic stars. I. Equations of structure. Astrophys. J. 150, 1005–1031 (1967)

    Article  Google Scholar 

  21. Hartle, J.B.: Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars. Astrophys. J. 153, 807–835 (1968)

    Article  Google Scholar 

  22. Heyl, J.S.: Gravitational radiation from strongly magnetized white dwarfs. Mon. Not. R. Astron. Soc. 317, 310–314 (2000)

    Article  Google Scholar 

  23. Hessels, J.W.T., Ranson, S.M., Stairs, I.H., Freire, P.C.C., Kaspi, V.M., Camilo, F.: A radio pulsar spinning at 716 Hz. Science 311, 1901–1904 (2006)

    Article  Google Scholar 

  24. Iorio, L.: On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging. Astron. Astrophys. 433(1), 385–393 (2005)

    Article  MathSciNet  Google Scholar 

  25. Iorio, L.: A note on the evidence of the gravitomagnetic field of Mars. Class. Quantum Gravity 23(17), 5451 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iorio, L.: Dynamical determination of the quadrupole mass moment of a white dwarf. Astrophys. Space Sci. 310, 73–76 (2007a)

    Article  Google Scholar 

  27. Iorio, L.: Dynamical constraints on some orbital and physical properties of the WD0137-349A/B binary system. Astrophys. Space Sci. 312, 337–341 (2007b)

    Article  Google Scholar 

  28. Iorio, L.: The impact of the oblateness of regulus on the motion of its companion. Astrophys. Space Sci. 318, 51–55 (2008)

    Article  Google Scholar 

  29. Iorio, L.: An assessment of the systematic uncertainty in present and future tests of the Lense–Thirring effect with satellite laser ranging. Space Sci. Rev. 148(1–4), 363–381 (2009)

    Article  Google Scholar 

  30. Iorio, L.: Perturbed stellar motions around the rotating black hole in Sgr A for a generic orientation of its spin axis. Phys. Rev. D 84(12), id 124001 (2011)

  31. Iorio, L.: Dynamical orbital effects of general relativity on the satellite-to-satellite range and range-rate in the GRACE mission: A sensitivity analysis. arXiv:1011.1916v5[gr-qc] (2012)

  32. Iorio, L.: A possible new test of general relativity with Juno. Class. Quantum Gravity 30, 19, id 195011 (2013)

  33. Iorio, L.: Orbital motions as gradiometers for post-Newtonian tidal effects. Front. Astron. Space Sci. 1, id 3 (2014). doi:10.3389/fspas.2014.00003

  34. Ishwar, B., Elipe, A.: Secular solutions at triangular equilibrium point in the generalized photogravitational restricted three body problem. Astrophys. Space Sci. 277, 437–446 (2001)

    Article  MATH  Google Scholar 

  35. Ishwar, B., Kushvah, B.S.: Linear stability of triangular equilibrium points in the generalized photogravitational restricted three body problem with Poynting Robertson Drag. J. Dyn. Syst. 4(1), 79–86 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Pail, R., Goiginger, H., Schuh, W.D., et al.: Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett. 37, L20314 (2010)

    Article  Google Scholar 

  37. Khanna, M., Bhatnagar, K.B.: Existence and stability of libration points in the restricted three body problem when the smaller primary is a triaxial rigid body and the bigger one an oblate spheroid. Indian J. Pure Appl. Math. 30(7), 721–723 (1999)

    MATH  Google Scholar 

  38. Konopliv, A.S., Park, R.S., Yuan, D., Asmar, S.W., et al.: The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission. J. Geophys. Res. Planets 118, 1–20 (2013)

    Article  Google Scholar 

  39. Plummer, H.C.: On periodic orbits in the neighborhood of centres of liberation. Mon. Not. Astron. Soc. 26, 62–69 (1901)

    Google Scholar 

  40. Kumar, S., Ishwar, B.: Solutions of generalized photogravitational elliptic restricted three-body problem. AIP Conf. Proc. 1146, 456–460 (2009). doi:10.1063/1.3183564

    Article  Google Scholar 

  41. Kumar, S., Ishwar, B.: Locations of collinear equilibrium points in the generalized elliptic restricted three-body problem. Int. J. Eng. Sci. Technol. 3, 157–162 (2011)

    Google Scholar 

  42. Kumar, V., Choudry, R.K.: Nonlinear stability of the triangular libration points for the photo gravitational elliptic restricted problem of three bodies. Celest. Mech. Dyn. Astron. 48, 299–317 (1990). doi:10.1007/BF00049387

    Article  Google Scholar 

  43. Laarakkers, W.G.: Quadrupole moments of rotating neutron stars. Astrophys. J. 512, 282–287 (1999). doi:10.1086/306732

    Article  Google Scholar 

  44. Lense, J., Thirring, H.: Testing the local spacetime dynamics by heliospheric. Transl. Genet. Relat. Gravity 16, 727–741 (1918)

    Google Scholar 

  45. Markellos, V.V., Perdios, E., Labropoulou, P.: Linear stability of the triangular equilibrium points in the photogravitational elliptic restricted problem I. Astrophys. Space Sci. 194, 207–213 (1992). doi:10.1007/BF00643991

    Article  MATH  Google Scholar 

  46. McAlister, H.A., et al.: First results from the CHARA array. I. An interferometric and spectroscopic study of the fast rotator \(\alpha \) Leonis (Regulus). Astrophys. J. 628, 439–452 (2005)

    Article  Google Scholar 

  47. Meilland, A., Stee, Ph, Chesneau, O., Jones, C.: VLTI/MIDI observations of seven classical Be stars. Astron. Astrophys. 505, 687–693 (2009)

    Article  Google Scholar 

  48. Mital, A., Ahmad, I., Bhatnagar, K.B.: Periodic orbits in the photogravitational restricted problem with the smaller primary an oblate body. Astrophys. Space Sci. 323, 65 (2009)

    Article  MATH  Google Scholar 

  49. Moulton, F.R.: A Introduction to Celestial Mechanics, 2nd edn. Dover Publications Inc, New York (1914)

    MATH  Google Scholar 

  50. Papoyan, V.V., Sedrakyan, D.M., Chubaryan, E.V.: Newtonian theory of rapidly rotating white dwarfs. Astrophysics 7, 55 (1971)

    Article  Google Scholar 

  51. Perdios, E.A.: Critical symmetric periodic orbits in the photogravitational restricted three-body problem. Astrophys. Space Sci. 286, 501–513 (2003)

    Article  MATH  Google Scholar 

  52. Riabov, U.A.: Preliminary orbits Trojan asteroids. Sov. Astron. J. 29, 5 (1952)

    Google Scholar 

  53. Renzetti, G.: Exact geodetic precession of the orbit of a two-body gyroscope in geodesic motion about a third mass. Earth Moon Planets 109(1–4), 55 (2012)

  54. Renzetti, G.: Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment? Can. J. Phys. 90, 883–888 (2012)

  55. Renzetti, G.: Satellite orbital precessions caused by octupolar mass moment of a non-spherical body arbitrarily oriented in space. J. Astrophys. Astron. 34(4), 341–348 (2013)

    Article  Google Scholar 

  56. Renzetti, G.: Satellite orbital precessions caused by the first odd zonal J3. Astrophys. Space Sci. 352, 493–496 (2014)

    Article  Google Scholar 

  57. Rozelot, J.P., Damiani, C.: History of solar oblateness measurement and Interpretation. Eur. Phys. J. 36, 407–436 (2011)

    Google Scholar 

  58. Rozelot, J.P., Fazel, Z.: Revisiting the solar oblateness: is relevant astrophysics possible? Solar Phys. 287, 161–170 (2013)

    Article  Google Scholar 

  59. Safiya Beevi, A., Sharma, R.K.: Oblateness effect of Saturn on periodic orbits in Saturn–Titan restricted three-body problem. Astrophys. Space Sci. 340, 245–261 (2012)

    Article  Google Scholar 

  60. Sarris, E.: Families of the symmetric-periodic orbits in the elliptic three-body problem. Astrophys. Space Sci. 162, 107 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  61. Sahoo, S.K., Ishwar, B.: Stability of collinear equilibrium points in the generalized photogravitational elliptic restricted three-body problem. Bull. Astron. Soc. India 28, 579 (2000)

    Google Scholar 

  62. Sharma, R.K.: The linear stability of libration points of the photogravitational restricted three-body problem when the smaller primary is an oblate spheroid. Astrophys. Space Sci. 135, 271 (1987)

    Article  MATH  Google Scholar 

  63. Shibata, M.: Effects of the quadrupole moment of rapidly rotating neutron stars on the motion of the accretion disks. Prog. Theor. Phys. 99, 69–78 (1998). doi:10.1143/PTP.99

    Article  Google Scholar 

  64. Smith, D.E., Zuber, M.T., Philips, R.J., et al.: Gravity field and internal structure of Mercury from MESSINGER. Science 336, 214–217 (2012)

    Article  Google Scholar 

  65. Sharma, R.K., Rao, P.V.S.: Stationary solutions and their characteristic exponents in the restricted three-body problem when the more massive primary Is an oblate spheroid. Celest. Mech. 13, 137–149 (1976). doi:10.1007/

    Article  MathSciNet  MATH  Google Scholar 

  66. Sharma, R.K., Taqvi, Z.A., Bhatnagar, K.B.: Existence and stability of libration points in the restricted three-body problem when the primaries are triaxial rigid bodies. Celest. Mech. Dyn. Astron. 79, 119–133 (2001). doi:10.1023/A:1011168605411

    Article  MathSciNet  MATH  Google Scholar 

  67. Singh, J., Begha, J.M.: Stability of equilibrium points in the generalized perturbed restricted three-body problem. Astrophys. Space Sci. 331, 511–519 (2011). doi:10.1007/s10509-010-0464-1

    Article  MATH  Google Scholar 

  68. Singh, J., Ishwar, B.: Stability of collinear equilibrium points in the generalized photogravitational elliptic restricted three-body problem. Bull. Astron. Soc. India 27, 415 (1999)

    Google Scholar 

  69. Singh, J., Umar, A.: Motion in the photogravitational elliptic restricted three-body problem under an oblate primary. Astron. J. 143, 109–131 (2012). doi:10.1088/0004-6256/143/5/109

  70. Singh, J., Umar, A.: On the stability of triangular equilibrium points in the elliptic R3BP under radiating and oblate primaries. Astrophys. Space Sci. 341, 349–358 (2012). doi:10.1007/s10509-012-1109-3

  71. Singh, J., Umar, A.: On “out of Plane” equilibrium points in the elliptic restricted three-body problem with radiating and oblate primaries. Astrophys. Space Sci. 344, 13–19 (2013). doi:10.1007/s10509-012-1292-2

  72. Singh, J., Umar, A.: Collinear equilibrium points in the elliptic R3BP with oblateness and radiation. Adv. Space Res. 52, 1489–1496 (2013). doi:10.1016/j.asr.2013.07.027

    Article  Google Scholar 

  73. Singh, J., Umar, A.: Application of binary pulsars to axisymmetric bodies in the elliptic R3BP. Astrophys. Space Sci. 348, 393–402 (2013). doi:10.1007/s10509-013-1585-0

  74. Singh, J., Umar, A.: On motion around the collinear libration points in the elliptic restricted three-body problem with a bigger triaxial primary. New Astron. 29, 36–41 (2014). doi:10.1016/j.newast.2013.11.003

    Article  Google Scholar 

  75. Soffel, M.H.: Relativity in Astrometry. Celestial Mechanics and Geodesy. Springer, Berlin (1988)

    Google Scholar 

  76. Szebehely, V.G.: Theory of Orbits. Academic press, New York (1967)

    Google Scholar 

  77. Tsirogiannis, G.A., Douskos, C.N., Perdios, E.A.: Computation of the Liapunov orbits in the photogravitational RTBP with oblateness. Astrophys. Space Sci. 305, 389 (2006)

    Article  Google Scholar 

  78. Valtonen, M., Karttunen, H.: The Tree-Body Problem. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  79. Van Belle, G.T., David, R.C., Robert, R.T., Akeson, R.L., Lada, E.A.: Interferometric observations of rapidly rotating stars. Astrophys. J. 559, 1155–1164 (2001)

    Article  Google Scholar 

  80. Vishnu Namboori, N.I., Sudheer Reedy, D., Sharma, R.K.: Effect of oblateness and radiation pressure on angular frequencies at collinear points. Astrophys. Space Sci. 318, 161 (2008)

    Article  Google Scholar 

  81. Winter, O.C.: Stable satellites around extrasolar giant planets. Planet Space Sci. 48, 23–28 (2000)

    Article  Google Scholar 

  82. Yan, J., Zhong, Z., Li, F., et al.: Comparison analyses on the \(150\times 150\) lunar gravity field models by gravity/topographyadmittance, correlation and precision orbit determination. Adv. Space Res. 52, 512–520 (2013)

    Article  Google Scholar 

  83. Yoon, Jinmi, et al.: A new view of Vega’s composition, mass, and age. Astrophys. J. 708, 71–79 (2010)

    Article  Google Scholar 

  84. Zimovshchikov, A.S., Tkhai, V.N.: Instability of libration points and resonance phenomena in the photogravitational elliptic restricted three-body problem. Solar Syst. Res. 38, 155–164 (2004). doi:10.1023/B:SOLS.0000022826.31475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aishetu Umar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Umar, A. Effect of Oblateness of an Artificial Satellite on the Orbits Around the Triangular Points of the Earth–Moon System in the Axisymmetric ER3BP. Differ Equ Dyn Syst 25, 11–27 (2017). https://doi.org/10.1007/s12591-014-0232-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-014-0232-8

Keywords

Navigation