Skip to main content
Log in

Completeness Theorem for Discontinuous Dirac Systems

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate the completeness of the system of rootvectors for discontinuous Dirac systems in the Weyl’s limit circle case, using Krein’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allahverdiev, B.P., Bairamov, E., Ugurlu, E.: Eigenparameter dependent Sturm–Liouville problems in boundary conditions with transmission conditions. J. Math. Anal. Appl. 401(1), 388–396 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amirov, R.Kh: On a representation of solution of Dirac differential equation systems which have discontinuity in interval. Int. J. Pure Appl. Math. 12(3), 297–308 (2004)

    Google Scholar 

  3. Bairamov, E., Ugurlu, E.: The determinants of dissipative Sturm–Liouville operators with transmission conditions. Math. Comput. Model 53, 805–813 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bairamov, E., Ugurlu, E.: On the characteristic values of the real component of a dissipative boundary value transmission problem. Appl. Math. Comput. 218(19), 9657–9663 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bairamov E., Ugurlu E.: Krein’s theorems for a dissipative boundary value transmission problem. Complex. Anal. Oper. Theory. (2011). doi:10.1007/s11785-011-1180-z.

  6. Everitt, W.N., Hinton, D.B., Shaw, J.K.: The asymtotic form of the Titchmarsh–Weyl coefficient for Dirac systems. J. Lond. Math. Soc. 2(27), 465–467 (1983)

    Google Scholar 

  7. Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. American Mathematical Society, Providence (1969)

    MATH  Google Scholar 

  8. Guseinov, G.: Completeness theorem for the dissipative Sturm–Liouville operator. Turkish J. Math 17, 48–54 (1993)

    MATH  Google Scholar 

  9. Guseinov, GSh, Tuncay, H.: The determinants of perturbation connected with a dissipative Sturm–Liouville operator. J. Math. Anal. Appl. 194, 39–49 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kadakal, M., Mukhtarov, OSh: Discontinuous Sturm–Liouville problems containing eigenparameter in the boundary condition. Acta Math. Sinic Engl. Ser. Sep. 22(5), 1519–1528 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Krein, M.G.: On the indeterminate case of the Sturm–Liouville boundary problem in the interval. Izv. Akad. Nauk SSSR Ser. Mat. 16(4), 293–324 (1952)

    MathSciNet  Google Scholar 

  12. Levitan, B.M., Sargsjan, I.S.: Sturm–Liouville and Dirac Operators. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991)

    Google Scholar 

  13. Naimark M.A.: Linear Differential Operators, 2nd edn. Nauka, Moscow (1969) (English transl. of 1st edn, Part 1, 2, Frederick Ungar Publishing Co., New York (1968))

  14. Roos, B.W., Sangren, W.C.: Spectra for a pair of singular first order differential equations. Proc. Am. Math. 12, 468–476 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  15. Roos B.W. Sangren W.C.: Spectra for a pair of first order differential equations, San Diego, CA. General Atomic Report GA 1373 (1960)

  16. Roos, B.W., Sangren, W.C.: Expansions associated with a pair of singular first-order differential equations. J. Math. Phys. 4, 999–1008 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shahriari, M., Jodayree Akbarfam, A., Teschl, G.: Uniqueness for inverse Sturm–Liouville problems with a finite number of transmission conditions. J. Math. Anal. 395(1), 19–29 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Titchmarsh, E.C.: Some eigenfunction expansion formulae. Proc. Lond. Math. Soc. 11, 159–168 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  19. Titchmarsh, E.C.: A problem in relativistic quantum mechanics. Proc. Lond. Math. Soc. 3(11), 169–192 (1961)

    Article  MathSciNet  Google Scholar 

  20. Titchmarsh, E.C.: On the nature of the spectrum in problems of relativistic quantum mechanics. Quart. J. Math. Oxford Ser. 2(12), 227–240 (1961)

    Article  MathSciNet  Google Scholar 

  21. Titchmarsh, E.C.: On the nature of the spectrum in problems of relativistic quantum mechanics. II. Quart. J. Math. Oxford Ser. 2(13), 181–192 (1962)

    Article  MathSciNet  Google Scholar 

  22. Tunç, O.E., Mukhtarov, Sh: Fundamental solutions and eigenvalues of one boundary-value problem with transmission conditions. Appl. Math. Comput. 157, 347–355 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yang, C.F.: Hochstad–Lieberman theorem for Dirac operator with eigenparameter dependent boundary conditions. Nonlinear Anal. 74, 2475–2484 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yang, Q., Wang, W.: Spectral properties of Sturm–Liouville operators with discontinuities at finite points. Math. Sci. 6, 34 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Tuna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuna, H., Eryilmaz, A. Completeness Theorem for Discontinuous Dirac Systems. Differ Equ Dyn Syst 23, 15–23 (2015). https://doi.org/10.1007/s12591-013-0194-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-013-0194-2

Keywords

Mathematics Subject Classification

Navigation