Skip to main content
Log in

Positive Solutions for a \(n\)th-Order Impulsive Differential Equation with Integral Boundary Conditions

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we study the existence of positive solutions for the following \(n\)th-order impulsive boundary value problem

$$\begin{aligned} \left\{ \begin{array}{l} u^{(n)}(t)+f(t,u(t))=0,\quad t\in [0,1],t\not =t_k,\\ -\Delta u^{(n-1)}|_{t=t_k}=I_k(u(t_k)),\quad k=1,2,\ldots ,m,\\ u(0)=\int _0^1 u(t)\mathrm d \alpha (t),\qquad u(1)=\int _0^1 u(t)\mathrm d \beta (t),\\ u^{\prime }(0)=\cdots =u^{(n-3)}(0)=u^{(n-2)}(0)=0. \end{array}\right. \end{aligned}$$

Here \(f\in C([0,1]\times \mathbb{R }^+,\mathbb{R }^+), I_k\in C(\mathbb{R }^+,\mathbb{R }^+) ( {\mathbb{R }^+:=[0,\infty )})\) and \(\int _0^1 u(t)\mathrm d \alpha (t), \int _0^1 u(t)\mathrm d \beta (t)\) are Riemann–Stieltjes integrals (i.e., \(\alpha (t)\) and \(\beta (t)\) have bounded variation). We use the Krasnoselskii–Zabreiko fixed point theorem to establish our main results. Furthermore, our nonlinear term \(f\) is allowed to grow superlinearly and sublinearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webb, J.: Nonlocal conjugate type boundary value problems of higher order. Nonlinear Anal. 71, 1933–1940 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hao, X., Liu, L., Wu, Y., Sun, Q.: Positive solutions for nonlinear \(n\)th-order singular eigenvalue problem with nonlocal conditions. Nonlinear Anal. 73, 1653–1662 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Webb, J., Infante, G.: Positive solutions of nonlocal boundary value problems involving integral conditions. Nonlinear Differ. Equ. Appl. 15, 45–67 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Webb, J., Infante, G.: Positive solutions of nonlocal boundary value problems: a unified approach. J. Lond. Math. Soc. 74, 673–693 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Webb, J., Lan, K.: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type. Topol. Methods Nonlinear Anal. 27, 91–116 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Jiang, J., Liu, L., Wu, Y.: Positive solutions for second order impulsive differential equations with Stieltjes integral boundary conditions. Adv. Differ. Equ. 124 (2012)

  7. Infante, G., Pietramala, P.: Nonlocal impulsive boundary value problems with solutions that change sign. AIP Conf. Proc. 1124, 205–213 (2009)

    Article  MathSciNet  Google Scholar 

  8. Infante, G., Pietramala, P., Zima, M.: Positive solutions for a class of nonlocal impulsive BVPs via fixed point index. Topol. Methods Nonlinear Anal. 36, 263–284 (2010)

    MATH  MathSciNet  Google Scholar 

  9. Jankowski, T.: Positive solutions for second order impulsive differential equations involving Stieltjes integral conditions. Nonlinear Anal. 74, 3775–3785 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhang, K., Xu, J., Dong, W.: Positive solutions for a fourth-order \(p\)-Laplacian boundary value problem with impulsive effects. Boundary Value Probl. 120 (2013)

  11. Ding, Y., O’Regan, D.: Positive solutions for a second-order \(p\)-Laplacian impulsive boundary value problem. Adv. Differ. Equ. 159 (2012)

  12. Yang, Z.: Existence and nonexistence results for positive solutions of an integral boundary value problem. Nonlinear Anal. 65, 1489–1511 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Yang, Z.: Positive solutions of a second-order integral boundary value problem. J. Math. Anal. Appl. 321, 751–765 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Krein, M., Rutman, M.: Linear operators leaving invariant a cone in a Banach space. Trans. Am. Math. Soc. 10, 199–325 (1962)

    Google Scholar 

  15. Xu, J., Yang, Z.: Positive solutions for a system of \(n\)th-order nonlinear boundary value problem. Electron. J. Qual. Theory Diff. Equ. 4, 1–16 (2011)

    Google Scholar 

  16. Xu, J., Yang, Z.: Positive solutions for a system of generalized Lidstone problems. J. Appl. Math. Comput. 37, 13–35 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yuan, C.: Multiple positive solutions for \((n-1, 1)\)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations. Electron. J. Qual. Theory Diff. Equ. 36, 1–12 (2010)

    Article  Google Scholar 

  18. Krasnoselski, M., Zabreiko, P.: Geometrical Methods of Nonlinear Analysis. Springer, Berlin (1984)

    Book  Google Scholar 

Download references

Acknowledgments

Research was supported by the NNSF-China (10971046), the NSF of Shandong Province (ZR2012AQ007) and Graduate Independent Innovation Foundation of Shandong University (yzc12063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiafa Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., O’Regan, D. & Yang, Z. Positive Solutions for a \(n\)th-Order Impulsive Differential Equation with Integral Boundary Conditions. Differ Equ Dyn Syst 22, 427–439 (2014). https://doi.org/10.1007/s12591-013-0176-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-013-0176-4

Keywords

Navigation